Shimojo M, Whorwood C B, Stewart P M
Department of Medicine, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, UK.
J Mol Endocrinol. 1996 Oct;17(2):121-30. doi: 10.1677/jme.0.0170121.
11 beta-Hydroxysteroid dehydrogenase (11 beta-HSD) catalyses the interconversion of biologically active cortisol to inactive cortisone in man, and corticosterone to 11-dehydrocorticosterone in rodents. As such, this enzyme has been shown to confer aldosterone-selectivity on the mineralocorticoid receptor and to modulate cortisol/corticosterone access to the glucocorticoid receptor (GR). Two kinetically distinct isoforms of this enzyme have been characterized in both rodents and man; a low-affinity NADP(H)-dependent enzyme (11 beta-HSD1) which predominantly acts as an oxoreductase and, more recently, a high-affinity NAD-dependent uni-directional dehydrogenase (11 beta-HSD2). In this study we have analysed the expression of both 11 beta-HSD1 and 11 beta-HSD2 isoforms in rat adrenal cortex and medulla and have investigated their possible roles with respect to glucocorticoid-regulated enzymes mediating catecholamine biosynthesis in adrenal medullary chromaffin cells. Using a rat 11 beta-HSD1 probe and a recently cloned in-house mouse 11 beta-HSD2 cDNA probe, Northern blot analyses revealed expression of mRNA species encoding both 11 beta-HSD1 (1.4 kb) and 11 beta-HSD2 (1.9 kb) in the whole adrenal. Consistent with this, 11 beta-dehydrogenase activity (pmol 11-dehydrocorticosterone formed/mg protein per h, mean +/- S.E.M.) in adrenal homogenates, when incubated with 50 nM corticosterone in the presence of 200 microM NAD, was 97.0 +/- 9.0 and with 500 nM corticosterone in the presence of 200 microM NADP, was 98.0 +/- 1.4. 11-Oxoreductase activity (pmol corticosterone formed/mg protein per h) with 500 nM 11-dehydrocorticosterone in the presence of 200 microM NADPH, was 187.7 +/- 31.2. In situ hybridization studies of rat adrenal cortex and medulla using 35 S-labelled antisense 11 beta-HSD1 cRNA probe revealed specific localization of 11 beta-HSD1 mRNA expression predominantly to cells at the corticomedullary junction, most likely within the inner cortex. In contrast, 11 beta-HSD2 mRNA was more abundant in cortex versus medulla, and was more uniformly distributed over the adrenal gland. Negligible staining was detected using control sense probes. Ingestion of the 11 beta-HSD inhibitor, glycyrrhizic acid (> 100 mg/kg body weight per day for 4 days) resulted in significant inhibition of adrenal NADP-dependent (98.0 +/- 1.4 vs 42.5 +/- 0.4) and NAD-dependent (97.0 +/- 9.0 vs 73.2 +/- 6.7) 11 beta-dehydrogenase activity and 11-oxoreductase activity (187.7 +/- 31.2 vs 67.7 +/- 15.3). However, while levels of 11 beta-HSD1 mRNA were similarly reduced (0.85 +/- 0.07 vs 0.50 +/- 0.05 arbitrary units), those for 11 beta-HSD2 remained unchanged (0.44 +/- 0.03 vs 0.38 +/- 0.01). Levels of mRNA encoding the glucocorticoid-dependent enzyme phenylethanolamine N-methyltransferase which catalyses the conversion of noradrenaline to adrenaline, were also significantly reduced in those rats given glycyrrhizic acid (1.12 +/- 0.04 vs 0.78 +/- 0.04), while those for the glucocorticoid-independent enzyme tyrosine hydroxylase (1.9 kb), which catalyses the conversion of tyrosine to DOPA, were unchanged (0.64 +/- 0.04 vs 0.61 +/- 0.04). In conclusion, the rat adrenal gland expresses both 11 beta-HSD1 and 11 beta-HSD2 isoforms. 11 beta-HSD1 gene expression is localized to the adrenal cortico-medullary junction, where it is ideally placed to regulate the supply of cortex-derived corticosterone to the medullary chromaffin cells. This, together with our in vivo studies, suggests that 11 beta-HSD1 may play an important role with respect to adrenocorticosteroid regulation of adrenaline biosynthesis. The role of 11 beta-HSD2 in the adrenal remains to be elucidated.
11β-羟类固醇脱氢酶(11β-HSD)催化人体内具有生物活性的皮质醇转化为无活性的可的松,以及啮齿动物体内皮质酮转化为11-脱氢皮质酮。因此,该酶已被证明可赋予盐皮质激素受体醛固酮选择性,并调节皮质醇/皮质酮与糖皮质激素受体(GR)的结合。在啮齿动物和人类中均已鉴定出该酶的两种动力学不同的同工型;一种低亲和力的依赖NADP(H)的酶(11β-HSD1),主要作为氧化还原酶起作用,以及最近发现的一种高亲和力的依赖NAD的单向脱氢酶(11β-HSD2)。在本研究中,我们分析了大鼠肾上腺皮质和髓质中11β-HSD1和11β-HSD2同工型的表达,并研究了它们在介导肾上腺髓质嗜铬细胞中儿茶酚胺生物合成的糖皮质激素调节酶方面的可能作用。使用大鼠11β-HSD1探针和最近克隆的内部小鼠11β-HSD2 cDNA探针,Northern印迹分析显示在整个肾上腺中均有编码11β-HSD1(1.4 kb)和11β-HSD2(1.9 kb)的mRNA表达。与此一致,当在200μM NAD存在下与50 nM皮质酮一起孵育时,肾上腺匀浆中的11β-脱氢酶活性(每小时形成的11-脱氢皮质酮的pmol数/mg蛋白质,平均值±标准误)为97.0±9.0,当在200μM NADP存在下与500 nM皮质酮一起孵育时,为98.0±1.4。在200μM NADPH存在下与500 nM 11-脱氢皮质酮的11-氧化还原酶活性(每小时形成的皮质酮的pmol数/mg蛋白质)为187.7±31.2。使用35S标记的反义11β-HSD1 cRNA探针对大鼠肾上腺皮质和髓质进行原位杂交研究,结果显示11β-HSD1 mRNA表达主要定位于皮质髓质交界处的细胞,最有可能在内皮质中。相比之下,11β-HSD2 mRNA在皮质中的含量高于髓质,并且在肾上腺中分布更均匀。使用对照正义探针检测到的染色可忽略不计。摄入11β-HSD抑制剂甘草酸(每天>100 mg/kg体重,持续4天)导致肾上腺NADP依赖的(98.0±1.4对42.5±0.4)和NAD依赖的(97.0±9.0对73.2±6.7)11β-脱氢酶活性以及11-氧化还原酶活性(187.7±31.2对67.7±15.3)受到显著抑制。然而,虽然11β-HSD1 mRNA水平同样降低(0.85±0.07对0.50±0.05任意单位),但11β-HSD2的水平保持不变(0.44±0.03对0.38±0.01)。在给予甘草酸的大鼠中,编码催化去甲肾上腺素转化为肾上腺素的糖皮质激素依赖性酶苯乙醇胺N-甲基转移酶的mRNA水平也显著降低(1.12±0.04对0.78±0.04),而催化酪氨酸转化为多巴的糖皮质激素非依赖性酶酪氨酸羟化酶(1.9 kb)的mRNA水平则保持不变(0.64±0.04对0.61±0.04)。总之,大鼠肾上腺表达11β-HSD1和11β-HSD2同工型。11β-HSD1基因表达定位于肾上腺皮质髓质交界处,在此处它处于理想位置以调节皮质来源的皮质酮向髓质嗜铬细胞的供应。这与我们的体内研究一起表明,11β-HSD1可能在肾上腺皮质激素对肾上腺素生物合成的调节中起重要作用。11β-HSD2在肾上腺中的作用仍有待阐明。