Berghuis A M, Lee E, Raw A S, Gilman A G, Sprang S R
Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75235-9050, USA.
Structure. 1996 Nov 15;4(11):1277-90. doi: 10.1016/s0969-2126(96)00136-0.
G proteins play a vital role in transmembrane signalling events. In their inactive form G proteins exist as heterotrimers consisting of an alpha subunit, complexed with GDP and a dimer of betagamma subunits. Upon stimulation by receptors, G protein alpha subunits exchange GDP for GTP and dissociate from betagamma . Thus activated, alphasubunits stimulate or inhibit downstream effectors. The duration of the activated state corresponds to the single turnover rate of GTP hydrolysis, which is typically in the range of seconds. In Gialpha1, the Gly203-->Ala mutation reduces the affinity of the substrate for Mg2+, inhibits a key conformational step that occurs upon GTP binding and consequently inhibits the release of betagamma subunits from the GTP complex. The structure of the Gly203-->Ala mutant of Gialpha1 (G203AGialpha1) bound to the slowly hydrolyzing analog of GTP (GTPgammaS) has been determined in order to elucidate the structural changes that take place during hydrolysis.
We have determined the three dimensional structure of a Gly203-->Ala mutant of Gialpha1 at 2.6 A resolution. Although crystals were grown in the presence of GTPgammaS and Mg2+, the catalytic site contains a molecule of GDP and a phosphate ion, but no Mg2+. The phosphate ion is bound to a site near that occupied by the gamma-phosphate of GTPgammaS in the activated wild-type alpha subunit. A region of the protein, termed the Switch II helix, twists and bends to adopt a conformation that is radically different from that observed in other Gialpha1 subunit complexes.
Under the conditions of crystallization, the Gly203-->Ala mutation appears to stabilize a conformation that may be similar, although perhaps not identical, to the transient ternary product complex of Gialpha1-catalyzed GTP hydrolysis. The rearrangement of the Switch II helix avoids a potential steric conflict caused by the mutation. However, it appears that dissociation of the gamma-phosphate from the pentacoordinate intermediate also requires a conformational change in Switch II. Thus, a conformational rearrangement of the Switch II helix may be required in Galpha-catalyzed GTP hydrolysis.
G蛋白在跨膜信号传导事件中起着至关重要的作用。G蛋白以非活性形式存在时为异源三聚体,由一个与GDP结合的α亚基和一个βγ亚基二聚体组成。在受体刺激下,G蛋白α亚基将GDP换成GTP并与βγ亚基解离。如此激活后,α亚基刺激或抑制下游效应器。激活状态的持续时间对应于GTP水解的单周转速率,通常在数秒范围内。在Gialpha1中,Gly203→Ala突变降低了底物对Mg2+的亲和力,抑制了GTP结合时发生的关键构象步骤,从而抑制了βγ亚基从GTP复合物中的释放。为了阐明水解过程中发生的结构变化,已确定了与GTP的缓慢水解类似物(GTPγS)结合的Gialpha1的Gly203→Ala突变体(G203AGialpha1)的结构。
我们已确定Gialpha1的Gly203→Ala突变体在2.6埃分辨率下的三维结构。尽管晶体是在GTPγS和Mg2+存在下生长的,但催化位点含有一个GDP分子和一个磷酸根离子,而没有Mg2+。磷酸根离子结合在活化的野生型α亚基中GTPγS的γ磷酸基团所占据位点附近的一个位点上。蛋白质的一个区域,称为开关II螺旋,发生扭曲和弯曲,以采用与在其他Gialpha1亚基复合物中观察到的构象截然不同的构象。
在结晶条件下,Gly203→Ala突变似乎稳定了一种构象,该构象可能与Gialpha1催化的GTP水解的瞬时三元产物复合物相似,尽管可能不完全相同。开关II螺旋的重排避免了由突变引起的潜在空间冲突。然而,γ磷酸基团从五配位中间体的解离似乎也需要开关II中的构象变化。因此,在Galpha催化的GTP水解中可能需要开关II螺旋的构象重排。