Suppr超能文献

A strategy for designing inhibitors of beta-amyloid toxicity.

作者信息

Ghanta J, Shen C L, Kiessling L L, Murphy R M

机构信息

Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

J Biol Chem. 1996 Nov 22;271(47):29525-8. doi: 10.1074/jbc.271.47.29525.

Abstract

beta-Amyloid peptide is the major protein component of Alzheimer's plaques. When aggregated into amyloid fibrils, the peptide is toxic to neuronal cells. Here, an approach to the design of inhibitors of beta-amyloid toxicity is described; in this strategy, a recognition element, which interacts specifically with beta-amyloid, is combined with a disrupting element, which alters beta-amyloid aggregation pathways. The synthesis, biophysical characterization, and biological activity of such an inhibitor is reported. This prototype inhibitor is composed of residues 15-25 of beta-amyloid peptide, designed to function as the recognition element, linked to an oligolysine disrupting element. The inhibitor does not alter the apparent secondary structure of beta-amyloid nor prevent its aggregation; rather, it causes changes in aggregation kinetics and higher order structural characteristics of the aggregate. Evidence for these effects includes changes in fibril morphology and a reduction in thioflavin T fluorescence. In addition to its influence on the physical properties of beta-amyloid aggregates, the inhibitor completely blocks beta-amyloid toxicity to PC-12 cells. Together, these data suggest that this general strategy for design of beta-amyloid toxicity inhibitors is effective. Significantly, these results demonstrate that complete disruption of amyloid fibril formation is not necessary for abrogation of toxicity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验