Suppr超能文献

杂环甲酰胺作为潜在抗精神病药物的合成与评价

Synthesis and evaluation of heterocyclic carboxamides as potential antipsychotic agents.

作者信息

Norman M H, Navas F, Thompson J B, Rigdon G C

机构信息

Division of Chemistry, Glaxo Wellcome Inc., Research Triangle Park, North Carolina 27709, USA.

出版信息

J Med Chem. 1996 Nov 22;39(24):4692-703. doi: 10.1021/jm9603375.

Abstract

Heterocyclic analogues of 1192U90, 2-amino-N-(4-(4-(1,2-benzisothiazol-3-yl)-1-piperazinyl)-butyl) benzamide hydrochloride (1), were prepared and evaluated as potential antipsychotic agents. These analogues were evaluated in vitro for their binding to the dopamine D2, serotonin 5-HT2, and serotonin 5-HT1a receptors and in vivo for their ability to antagonize the apomorphine-induced climbing response in mice. Nine different types of heterocyclic carboxamides were studied in this investigation (i.e., pyridine-, thiophene-, benzothiophene-, quinoline-, 1,2,3,4-tetrahydroquinoline-, 2,3-dihydroindole-, indole-, benzimidazole-, and indazolecarboxamides). Two derivatives exhibited potent in vivo activities comparable to 1: 3-amino-N-(4-(4-(1,2-benzisothiazol-3-yl)-1-piperazinyl)butyl)-2 -pyridinecarboxamide (16) and 3-amino-N-(4-(4-(1,2-benzisothiazol-3-yl)-1-piperazinyl)butyl) -2-thiophenecarboxamide (29). Furthermore, these derivatives were found to be much less active in behavioral models predictive of extrapyramidal side effects than in the mouse climbing assay, which predicts antipsychotic activity. Carboxamides 16 and 29 were selected for further evaluation as potential backup compounds to 1.

摘要

制备了1192U90的杂环类似物2-氨基-N-(4-(4-(1,2-苯并异噻唑-3-基)-1-哌嗪基)丁基)苯甲酰胺盐酸盐(1),并将其作为潜在的抗精神病药物进行评估。对这些类似物进行了体外实验,检测它们与多巴胺D2、5-羟色胺5-HT2和5-羟色胺5-HT1a受体的结合情况,以及体内实验,检测它们拮抗阿扑吗啡诱导的小鼠攀爬反应的能力。本研究中研究了九种不同类型的杂环羧酰胺(即吡啶-、噻吩-、苯并噻吩-、喹啉-、1,2,3,4-四氢喹啉-、2,3-二氢吲哚-、吲哚-、苯并咪唑-和吲唑羧酰胺)。两种衍生物表现出与1相当的体内活性:3-氨基-N-(4-(4-(1,2-苯并异噻唑-3-基)-1-哌嗪基)丁基)-2-吡啶羧酰胺(16)和3-氨基-N-(4-(4-(1,2-苯并异噻唑-3-基)-1-哌嗪基)丁基)-2-噻吩羧酰胺(29)。此外,发现这些衍生物在预测锥体外系副作用的行为模型中的活性远低于在预测抗精神病活性的小鼠攀爬试验中的活性。选择羧酰胺16和29作为1的潜在备用化合物进行进一步评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验