Suppr超能文献

最佳自主肌肉控制模型。

A model of optimal voluntary muscular control.

作者信息

FitzHugh R

出版信息

J Math Biol. 1977 Jul 19;4(3):203-36. doi: 10.1007/BF00280973.

Abstract

In the absence of detailed knowledge of how the CNS controls a muscle through its motor fibers, a reasonable hypothesis is that of optimal control. This hypothesis is studied using a simplified mathematical model of a single muscle, based on A.V. Hill's equations, with series elastic element omitted, and with the motor signal represented by a single input variable. Two cost functions were used. The first was total energy expended by the muscle (work plus heat). If the load is a constant force, with no inertia, Hill's optimal velocity of shortening results. If the load includes a mass, analysis by optimal control theory shows that the motor signal to the muscle consists of three phases: (1) maximal stimulation to accelerate the mass to the optimal velocity as quickly as possible, (2) an intermediate level of stimulation to hold the velocity at its optimal value, once reached, and (3) zero stimulation, to permit the mass to slow down, as quickly as possible, to zero velocity at the specified distance shortened. If the latter distance is too small, or the mass too large, the optimal velocity is not reached, and phase (2) is absent. For lengthening, there is no optimal velocity; there are only two phases, zero stimulation followed by maximal stimulation. The second cost function was total time. The optimal control for shortening consists of only phases (1) and (3) above, and is identical to the minimal energy control whenever phase (2) is absent from the latter. Generalization of this model to include viscous loads and a series elastic element are discussed.

摘要

在缺乏关于中枢神经系统如何通过其运动纤维控制肌肉的详细知识的情况下,一个合理的假设是最优控制假设。使用基于A.V.希尔方程的单块肌肉简化数学模型对该假设进行研究,省略串联弹性元件,并将运动信号表示为单个输入变量。使用了两个成本函数。第一个是肌肉消耗的总能量(功加热量)。如果负载是恒定力且无惯性,则会得到希尔的最优缩短速度。如果负载包括质量,通过最优控制理论分析表明,向肌肉发送的运动信号包括三个阶段:(1)最大刺激,以使质量尽快加速到最优速度;(2)一旦达到最优速度,进行中等水平的刺激以保持速度;(3)零刺激,以使质量在指定的缩短距离处尽快减速至零速度。如果后者距离过小或质量过大,则无法达到最优速度,且不存在阶段(2)。对于伸长,不存在最优速度;只有两个阶段,零刺激后接最大刺激。第二个成本函数是总时间。缩短的最优控制仅包括上述阶段(1)和(3),并且只要后者不存在阶段(2),就与最小能量控制相同。讨论了将该模型推广到包括粘性负载和串联弹性元件的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验