Skapek S X, Rhee J, Kim P S, Novitch B G, Lassar A B
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
Mol Cell Biol. 1996 Dec;16(12):7043-53. doi: 10.1128/MCB.16.12.7043.
It was recently demonstrated that ectopic expression of cyclin D1 inhibits skeletal muscle differentiation and, conversely, that expression of cyclin-dependent kinase (cdk) inhibitors facilitates activation of this differentiation program (S. S. Rao, C. Chu, and D. S. Kohtz, Mol. Cell. Biol. 14:5259-5267, 1994; S. S. Rao and D. S. Kohtz, J. Biol. Chem. 270:4093-4100, 1995; S. X. Skapek, J. Rhee, D. B. Spicer, and A. B. Lassar, Science 267:1022-1024, 1995). Here we demonstrate that cyclin D1 inhibits muscle gene expression without affecting MyoD DNA binding activity. Ectopic expression of cyclin D1 inhibits muscle gene activation by both MyoD and myogenin, including a mutated form of myogenin in which two potential inhibitory cdk phosphorylation sites are absent. Because the retinoblastoma gene product, pRB, is a known target for cyclin D1-cdk phosphorylation, we determined whether cyclin D1-mediated inhibition of myogenesis was due to hyperphosphorylation of pRB. In pRB-deficient fibroblasts, the ability of MyoD to activate the expression of muscle-specific genes requires coexpression of ectopic pRB (B. G. Novitch, G. J. Mulligan, T. Jacks, and A. B. Lassar, J. Cell Biol., 135:441-456, 1996). In these cells, the expression of cyclins A and E can lead to pRB hyperphosphorylation and can inhibit muscle gene expression. The negative effects of cyclins A or E on muscle gene expression are, however, reversed by the presence of a mutated form of pRB which cannot be hyperphosphorylated. In contrast, cyclin D1 can inhibit muscle gene expression in the presence of the nonhyperphosphorylatable form of pRB. On the basis of these results we propose that G1 cyclin-cdk activity blocks the initiation of skeletal muscle differentiation by two distinct mechanisms: one that is dependent on pRB hyperphosphorylation and one that is independent of pRB hyperphosphorylation.
最近有研究表明,细胞周期蛋白D1的异位表达会抑制骨骼肌分化,相反,细胞周期蛋白依赖性激酶(cdk)抑制剂的表达则有助于激活这一分化程序(S. S. Rao、C. Chu和D. S. Kohtz,《分子与细胞生物学》14:5259 - 5267,1994;S. S. Rao和D. S. Kohtz,《生物化学杂志》270:4093 - 4100,1995;S. X. Skapek、J. Rhee、D. B. Spicer和A. B. Lassar,《科学》267:1022 - 1024,1995)。在此我们证明,细胞周期蛋白D1抑制肌肉基因表达,但不影响MyoD的DNA结合活性。细胞周期蛋白D1的异位表达会抑制MyoD和肌细胞生成素对肌肉基因的激活,包括一种缺失两个潜在抑制性cdk磷酸化位点的肌细胞生成素突变形式。由于视网膜母细胞瘤基因产物pRB是细胞周期蛋白D1 - cdk磷酸化的已知靶点,我们确定细胞周期蛋白D1介导的肌生成抑制是否是由于pRB的过度磷酸化。在缺乏pRB的成纤维细胞中,MyoD激活肌肉特异性基因表达的能力需要异位pRB的共表达(B. G. Novitch、G. J. Mulligan、T. Jacks和A. B. Lassar,《细胞生物学杂志》,135:441 - 456,1996)。在这些细胞中,细胞周期蛋白A和E的表达可导致pRB过度磷酸化,并可抑制肌肉基因表达。然而,细胞周期蛋白A或E对肌肉基因表达的负面影响可被一种不能被过度磷酸化的pRB突变形式所逆转。相比之下,在存在不可过度磷酸化形式的pRB时,细胞周期蛋白D1仍可抑制肌肉基因表达。基于这些结果,我们提出G1期细胞周期蛋白 - cdk活性通过两种不同机制阻断骨骼肌分化的起始:一种依赖于pRB过度磷酸化,另一种不依赖于pRB过度磷酸化。