Suppr超能文献

Aspects of the adaptive response to very low doses of radiation and other agents.

作者信息

Wolff S

机构信息

Laboratory of Radiobiology and Environmental Health, University of California, San Francisco 94143-0750, USA.

出版信息

Mutat Res. 1996 Nov 4;358(2):135-42. doi: 10.1016/s0027-5107(96)00114-5.

Abstract

When human lymphocytes and other cells are pre-exposed to very low doses of ionizing radiation and subsequently exposed to a high dose, less genetic damage, i.e., fewer chromosome aberrations, is found than is observed in cells that had not been pre-exposed. This has been termed the adaptive response and has been attributed to the induction of a repair mechanism by the low dose exposure. Several experiments have now been carried out on this adaptive response to better characterize the phenomenon. (A) Experiments with differential display of mRNAs indicate that human lymphocytes exposed to 2 cGy of X-rays have somewhat different mRNAs expressed than do unexposed cells. This is providing access to DNA that might be involved in adaptation. (B) Other experiments with embryonic cells from transgenic mice that are deficient in superoxide dismutase (SOD) have shown that the adaptive response is unrelated to the amount of SOD in the cells, and thus is independent of superoxide radicals. (C) Experiments in which very low doses of various restriction enzymes were electroporated into human lymphocytes have shown that low levels of double-strand DNA breaks alone are able to induce the adaptive response. (D) Experiments in which human male lymphocytes (XY chromosome constitution) and human female lymphocytes (XX chromosome constitution) were cocultivated have shown that adaptation is not caused by a change in the rate of cell progression to mitosis after a challenge dose, and is a further indication that cell stage sensitivity is not a factor in the adaptive response.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验