Suppr超能文献

光系统II中酪氨酸D氧化和质体醌QA还原的傅里叶变换红外差谱研究

Fourier transform infrared difference study of tyrosineD oxidation and plastoquinone QA reduction in photosystem II.

作者信息

Hienerwadel R, Boussac A, Breton J, Berthomieu C

机构信息

Section de Bioénergétique, CEA-Saclay, Gif-sur-Yvette, France.

出版信息

Biochemistry. 1996 Dec 3;35(48):15447-60. doi: 10.1021/bi961952d.

Abstract

Two redox active tyrosines are present in the homologous polypeptides D1 and D2 of photo-system II (PS II). TyrZ (D1-161) is involved in the electron transfer reactions resulting in oxygen evolution, while TyrD (D2-160) usually forms a dark-stable radical. In Mn-depleted PS II, TyrD. can be slowly reduced by exogenous reductants. Charge separation then results in the oxidation of TyrD and TyrZ and the reduction of the primary electron acceptor QA. The semiquinone QA- can be reoxidized by oxidants like ferricyanide. In the present work, experimental conditions leading to the generation of pure QA-/QA or TyrD./TyrD FTIR difference spectra have been optimized. Therefore, single-turnover flashes or short illuminations were performed on PS II samples in the presence of exogenous reductants or oxidants. The QA- and TyrD. radicals were generated with high yield and with a lifetime of several seconds or minutes allowing averaging of FTIR difference spectra with high signal to noise ratio. Both QA- formation and contributions at the electron donor side of PS II were monitored by EPR spectroscopy. In PS II samples at pH 6 in the presence of PMS, NH2OH, and DCMU, EPR measurements show that QA- is formed with high yield upon a 1 s illumination at 10 degrees C, while no radical from the electron donor side of PS II is detected. Therefore the QA-/QA FTIR spectrum obtained in these conditions shows only vibrational changes due to QA reduction in PS II. In contrast, a similar spectrum was recently interpreted in terms of dominant contributions from Chl+/Chl signals [MacDonald, G. M., Steenhuis, J. J., & Barry, B. A. (1995) J. Biol. Chem. 270, 8420-8428], although the contribution from the electron acceptor QA was not quantified. In particular, it is shown here that the large positive signal at 1478 cm-1 is due to the QA- state and not to a Chl+ mode. This band is not downshifted upon 15N-labeling of spinach PS II membranes within the +/- 1 cm-1 accuracy of the method and is therefore tentatively assigned to the v(C[symbol: see text]O) mode of the plastosemiquinone QA-. Also unchanged upon 15N-labeling, signals at 1644 and/or 1630 cm-1 are possible candidates for the v(C = O) mode(s) of neutral QA in PS II. The TyrD./TyrD FTIR spectrum is recorded at 4 degrees C on Tris-washed PS II membranes from spinach at pH 6 in the presence of phosphate, formate, and ferricyanide. EPR experiments performed on these samples show that almost all TyrD. is formed upon a 1 s illumination at 4 degrees C and that TyrD. is then reduced within 12 min in the dark. No contributions from TyrZ. or QA- are detected 2 s after illumination. It is thus possible to optimize experimental conditions to record the FTIR difference spectrum only due to TyrD photooxidation in PS II-enriched membranes of spinach. The TyrD./TyrD FTIR spectrum is compared to a cresol./cresol FTIR difference spectrum obtained by UV irradiation at 10 K of cresol at pH 8. The spectral analogies observed between the in vivo and in vitro spectra recorded either in H2O or in D2O suggest that IR modes of TyrD contribute at 1513 and 1252 cm-1. These frequencies are characteristic of a protonated tyrosine. A positive signal is observed at 1506 cm-1 for cresol. and at 1504 cm-1 for the TyrD. state. This suggests contribution of the TyrD. side chain at 1504 cm-1. A band at 1473 cm-1 was previously assigned to the v(CO) mode of TyrD. [MacDonald, G. M., Bixby, K. A., & Barry, B. A. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 11024-11028]. In contrast, no positive signal is observed at 1473 cm-1 in the TyrD./TyrD FTIR difference spectrum presented here. The TyrD./TyrD spectrum also shows vibrational changes from peptide groups and amino acid side chains which are modified upon TyrD. formation. Proton release at the PS II protein surface upon TyrD. formation is deduced from differential signals at the v(PO) modes of phosphate.

摘要

光系统II(PS II)的同源多肽D1和D2中存在两个氧化还原活性酪氨酸。TyrZ(D1 - 161)参与导致氧气释放的电子转移反应,而TyrD(D2 - 160)通常形成暗稳定自由基。在锰缺乏的PS II中,TyrD可被外源还原剂缓慢还原。电荷分离随后导致TyrD和TyrZ的氧化以及初级电子受体QA的还原。半醌QA - 可被铁氰化物等氧化剂再氧化。在本工作中,已优化了导致产生纯QA - /QA或TyrD·/TyrD傅里叶变换红外(FTIR)差光谱的实验条件。因此,在外源还原剂或氧化剂存在下,对PS II样品进行单周转闪光或短时间光照。QA - 和TyrD·自由基以高产率产生,且寿命为几秒或几分钟,这使得能够对具有高信噪比的FTIR差光谱进行平均。PS II电子供体侧的QA - 形成和贡献均通过电子顺磁共振(EPR)光谱进行监测。在pH 6且存在百草枯甲基硫酸甲酯(PMS)、羟胺和敌草隆(DCMU)的PS II样品中,EPR测量表明,在10℃下光照1 s时,QA - 以高产率形成,而未检测到来自PS II电子供体侧的自由基。因此,在这些条件下获得的QA - /QA FTIR光谱仅显示由于PS II中QA还原引起的振动变化。相比之下,最近有一个类似的光谱被解释为主要来自叶绿素阳离子(Chl +)/叶绿素信号的贡献[MacDonald, G. M., Steenhuis, J. J., & Barry, B. A. (1995) J. Biol. Chem. 270, 8420 - 8428],尽管未对电子受体QA的贡献进行量化。特别地,此处表明1478 cm - 1处的大正信号归因于QA - 状态而非Chl + 模式。在该方法±1 cm - 1的精度范围内,菠菜PS II膜进行15N标记后,该谱带未发生下移,因此暂定为质体半醌QA - 的v(C = O)模式。同样,在15N标记后未发生变化的1644和/或1630 cm - 1处的信号可能是PS II中中性QA的v(C = O)模式的候选信号。TyrD·/TyrD FTIR光谱是在4℃下,于pH 6、存在磷酸盐、甲酸盐和铁氰化物的条件下,对来自菠菜的经Tris洗涤的PS II膜进行记录的。对这些样品进行的EPR实验表明,在4℃下光照1 s时,几乎所有的TyrD·都形成,然后TyrD·在黑暗中12分钟内被还原。光照2 s后未检测到TyrZ·或QA - 的贡献。因此,可以优化实验条件以仅记录菠菜富含PS II的膜中由于TyrD光氧化引起的FTIR差光谱。将TyrD·/TyrD FTIR光谱与在pH 8下对甲酚进行10 K紫外线照射获得的甲酚阴离子/甲酚FTIR差光谱进行比较。在H2O或D2O中记录的体内和体外光谱之间观察到的光谱相似性表明,TyrD的红外模式在1513和1252 cm - 1处有贡献。这些频率是质子化酪氨酸的特征。甲酚阴离子在1506 cm - 1处以及TyrD·状态在1504 cm - 1处观察到正信号。这表明TyrD·侧链在1504 cm - 1处有贡献。之前已将位于1473 cm - 1处的一个谱带归属于TyrD的v(CO)模式[MacDonald, G. M., Bixby, K. A., & Barry, B. A. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 11024 - 11028]。相比之下,此处呈现的TyrD·/TyrD FTIR差光谱在1473 cm - 1处未观察到正信号。TyrD·/TyrD光谱还显示了肽基团和氨基酸侧链的振动变化,这些在TyrD·形成时会发生改变。根据磷酸盐v(PO)模式处的差异信号推断,TyrD·形成时PS II蛋白质表面有质子释放。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验