Fields B A, Goldbaum F A, Dall'Acqua W, Malchiodi E L, Cauerhff A, Schwarz F P, Ysern X, Poljak R J, Mariuzza R A
Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA.
Biochemistry. 1996 Dec 3;35(48):15494-503. doi: 10.1021/bi961709e.
Using site-directed mutagenesis, X-ray crystallography, and titration calorimetry, we have examined the structural and thermodynamic consequences of removing specific hydrogen bonds in an antigen-antibody interface. Crystal structures of three antibody FvD1.3 mutants, VLTyr50Ser (VLY50S), VHTyr32Ala (VHY32A), and VHTyr101Phe (VHY101F), bound to hen egg white lysozyme (HEL) have been determined at resolutions ranging from 1.85 to 2.10 A. In the wild-type (WT) FvD1.3-HEL complex, the hydroxyl groups of VLTyr50, VHTyr32, and VHTyr101 each form at least one hydrogen bond with the lysozyme antigen. Thermodynamic parameters for antibody-antigen association have been measured using isothermal titration calorimetry, giving equilibrium binding constants Kb (M-1) of 2.6 x 10(7) (VLY50S), 7.0 x 10(7) (VHY32A), and 4.0 x 10(6) (VHY101F). For the WT complex, Kb is 2.7 x 10(8) M-1; thus, the affinities of the mutant Fv fragments for HEL are 10-, 4-, and 70-fold lower than that of the original antibody, respectively. In all three cases entropy compensation results in an affinity loss that would otherwise be larger. Comparison of the three mutant crystal structures with the WT structure demonstrates that the removal of direct antigen-antibody hydrogen bonds results in minimal shifts in the positions of the remaining protein atoms. These observations show that this complex is considerably tolerant, both structurally and thermodynamically, to the truncation of antibody side chains that form hydrogen bonds with the antigen. Alterations in interface solvent structure for two of the mutant complexes (VLY50S and VHY32A) appear to compensate for the unfavorable enthalpy changes when protein-protein interactions are removed. These changes in solvent structure, along with the increased mobility of side chains near the mutation site, probably contribute to the observed entropy compensation. For the VHY101F complex, the nature of the large entropy compensation is not evident from a structural comparison of the WT and mutant complexes. Differences in the local structure and dynamics of the uncomplexed Fv molecules may account for the entropic discrepancy in this case.
利用定点诱变、X射线晶体学和滴定热分析法,我们研究了去除抗原-抗体界面中特定氢键的结构和热力学后果。已测定了与鸡蛋清溶菌酶(HEL)结合的三种抗体FvD1.3突变体VLTyr50Ser(VLY50S)、VHTyr32Ala(VHY32A)和VHTyr101Phe(VHY101F)的晶体结构,分辨率在1.85至2.10埃之间。在野生型(WT)FvD1.3-HEL复合物中,VLTyr50、VHTyr32和VHTyr101的羟基各自与溶菌酶抗原至少形成一个氢键。使用等温滴定量热法测量了抗体-抗原结合的热力学参数,得到平衡结合常数Kb(M-1)分别为2.6×10⁷(VLY50S)、7.0×10⁷(VHY32A)和4.0×10⁶(VHY101F)。对于野生型复合物,Kb为2.7×10⁸M-1;因此,突变型Fv片段对HEL的亲和力分别比原始抗体低10倍、4倍和70倍。在所有三种情况下,熵补偿导致亲和力损失,否则损失会更大。将三种突变体晶体结构与野生型结构进行比较表明,去除直接的抗原-抗体氢键导致其余蛋白质原子位置的移动最小。这些观察结果表明,该复合物在结构和热力学上对与抗原形成氢键的抗体侧链的截断具有相当大的耐受性。两种突变体复合物(VLY50S和VHY32A)界面溶剂结构的改变似乎补偿了去除蛋白质-蛋白质相互作用时不利的焓变。溶剂结构的这些变化,以及突变位点附近侧链流动性的增加,可能导致了观察到的熵补偿。对于VHY101F复合物,从野生型和突变体复合物的结构比较中,大熵补偿的性质并不明显。未结合的Fv分子局部结构和动力学的差异可能解释了这种情况下的熵差异。