Schreiber U, Krieger A
Lehrstuhl Botanik I, Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, Germany.
FEBS Lett. 1996 Nov 18;397(2-3):131-5. doi: 10.1016/s0014-5793(96)01176-3.
Upon onset of saturating continuous light only the first part of the observed polyphasic fluorescence rise follows Q(A) reduction (photochemical phase), whereas the remaining part (thermal phases) is kinetically limited by relatively slow reactions with light saturated half-times in the order of 10-50 ms. A simple hypothesis is presented for the interpretation of these fundamentally different types of variable fluorescence. The hypothesis, which is based on the reversible radical pair model of PSII, assumes stimulation of both prompt and recombination fluorescence upon Q(A) reduction, with only recombination fluorescence being in competition with nonradiative energy loss processes at the reaction centers. It is proposed that changes in the rate constants of these processes modulate the yield of recombination fluorescence in closed centers, thus causing large variations in the maximal fluorescence yield and also giving rise to the 'thermal phases'. This hypothesis can reconcile numerous experimental findings which so far have seemed difficult to interpret.
在饱和连续光照开始时,所观察到的多相荧光上升的第一部分跟随Q(A)的还原(光化学阶段),而其余部分(热阶段)在动力学上受相对缓慢反应的限制,其光饱和半衰期约为10 - 50毫秒。本文提出了一个简单的假设来解释这些根本不同类型的可变荧光。该假设基于PSII的可逆自由基对模型,假定在Q(A)还原时即时荧光和重组荧光均受到刺激,只有重组荧光在反应中心与非辐射能量损失过程竞争。有人提出,这些过程的速率常数变化调节封闭中心中重组荧光的产量,从而导致最大荧光产量的大幅变化,也产生了“热阶段”。这一假设能够调和众多迄今为止似乎难以解释的实验结果。