Suppr超能文献

Modulation of the plasminogen activator cascade during enhanced epidermal proliferation in vivo.

作者信息

Jensen P J, Lavker R M

机构信息

Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia 19104-6142, USA.

出版信息

Cell Growth Differ. 1996 Dec;7(12):1793-804.

PMID:8959348
Abstract

Many lines of evidence support an involvement of urokinase plasminogen activator (uPA) and its type 1 inhibitor (PAI-1) in the migration of a variety of cells, including normal keratinocytes and carcinoma lines. In the present study, uPA expression was found to be a characteristic not just of migratory but also of proliferative keratinocytes. A variety of naturally occurring and experimentally induced epidermal hyperproliferative conditions were examined in mice, including fetal and neonatal epidermis, tape-stripped epidermis, and epidermis from which the hairs had been gently plucked. In all cases, epidermal hyperproliferation was accompanied by elevated levels of uPA mRNA (as measured by in situ hybridization) and activity (as measured by zymography). uPA mRNA was predominantly localized in the basal and immediately suprabasal cells, which constitute the proliferative population. To determine whether a PAI was concomitantly elevated, in situ hybridization for PAI-1 and PAI-2 was performed. PAI-2 but not PAI-1 mRNA was detected in fetal and neonatal epidermis, localized in the spinous layers. Although mRNAs for both inhibitors were induced by tape-stripping or hair-plucking, their distribution was more focal and more transient than that of uPA mRNA. These findings show that uPA, but not its usual inhibitors, is consistently elevated in the proliferative population of keratinocytes in a diverse range of hyperproliferative states. Two hypotheses are suggested by these data: (a) uPA may play a regulatory role in the activation of epidermal proliferation; or (b) uPA may be involved in the vertical migration of keratinocytes that must accompany increased cell proliferation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验