Schmidt H H, Hofmann H, Schindler U, Shutenko Z S, Cunningham D D, Feelisch M
Clinical Biochemistry and Pathobiochemistry, Julius-Maximilians-Universität, Würzburg, Germany.
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14492-7. doi: 10.1073/pnas.93.25.14492.
The nitric-oxide synthase (NOS; EC 1.14.13.39) reaction is formulated as a partially tetrahydrobiopterin (H4Bip)-dependent 5-electron oxidation of a terminal guanidino nitrogen of L-arginine (Arg) associated with stoichiometric consumption of dioxygen (O2) and 1.5 mol of NADPH to form L-citrulline (Cit) and nitric oxide (.NO). Analysis of NOS activity has relied largely on indirect methods such as quantification of nitrite/nitrate or the coproduct Cit; we therefore sought to directly quantify .NO formation from purified NOS. However, by two independent methods, NOS did not yield detectable .NO unless superoxide dismutase (SOD; EC 1.15.1.1) was present. In the presence of H4Bip, internal .NO standards were only partially recovered and the dismutation of superoxide (O2-.), which otherwise scavenges. .NO to yield ONOO-, was a plausible mechanism of action of SOD. Under these conditions, a reaction between NADPH and ONOO- resulted in considerable overestimation of enzymatic NADPH consumption. SOD lowered the NADPH:Cit stoichiometry to 0.8-1.1, suggesting either that additional reducing equivalents besides NADPH are required to explain Arg oxidation to .NO or that .NO was not primarily formed. The latter was supported by an additional set of experiments in the absence of H4Bip. Here, recovery of internal .NO standards was unaffected. Thus, a second activity of SOD, the conversion of nitroxyl (NO-) to .NO, was a more likely mechanism of action of SOD. Detection of NOS-derived nitrous oxide (N2O) and hydroxylamine (NH2OH), which cannot arise from .NO decomposition, was consistent with formation of an .NO precursor molecule such as NO-. When, in the presence of SOD, glutathione was added, S-nitrosoglutathione was detected. Our results indicate that .NO is not the primary reaction product of NOS-catalyzed Arg turnover and an alternative reaction mechanism and stoichiometry have to be taken into account.
一氧化氮合酶(NOS;EC 1.14.13.39)反应的化学计量式为:以部分依赖四氢生物蝶呤(H4Bip)的方式,将L-精氨酸(Arg)末端胍基氮进行5电子氧化,该过程伴随着化学计量的氧气(O2)消耗以及1.5摩尔还原型辅酶II(NADPH)的消耗,生成L-瓜氨酸(Cit)和一氧化氮(·NO)。一氧化氮合酶活性的分析很大程度上依赖于间接方法,如亚硝酸盐/硝酸盐定量或副产物瓜氨酸定量;因此,我们试图直接对纯化的一氧化氮合酶生成的·NO进行定量。然而,通过两种独立方法,除非存在超氧化物歧化酶(SOD;EC 1.15.1.1),一氧化氮合酶不会产生可检测到的·NO。在有H4Bip存在的情况下,内部·NO标准品仅部分回收,而超氧阴离子(O2-·)的歧化反应(否则会清除·NO生成过氧亚硝酸根离子(ONOO-))是超氧化物歧化酶可能的作用机制。在这些条件下,还原型辅酶II与过氧亚硝酸根离子之间的反应导致对酶促还原型辅酶II消耗的显著高估。超氧化物歧化酶将还原型辅酶II与瓜氨酸的化学计量比降低至0.8 - 1.1,这表明要么除了还原型辅酶II之外还需要额外的还原当量来解释精氨酸氧化生成·NO的过程;要么·NO并非主要产物。后一种观点在没有H4Bip的另一组实验中得到了支持。在此实验中,内部·NO标准品的回收未受影响。因此,超氧化物歧化酶的第二种活性,即硝酰阴离子(NO-)转化为·NO,是超氧化物歧化酶更可能的作用机制。检测到一氧化氮合酶衍生的一氧化二氮(N2O)和羟胺(NH2OH)(它们不可能由·NO分解产生),这与形成如NO-这样的·NO前体分子一致。当在有超氧化物歧化酶存在的情况下加入谷胱甘肽时,检测到了S-亚硝基谷胱甘肽。我们的结果表明,·NO并非一氧化氮合酶催化的精氨酸周转的主要反应产物,必须考虑一种替代的反应机制和化学计量关系。