Plano Santiago Andrés, Baidanoff Fernando Martín, Trebucq Laura Lucía, Suarez Sebastián Ángel, Doctorovich Fabio, Golombek Diego Andrés, Chiesa Juan José
Institute for Biomedical Research (BIOMED), Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), C1107CABA Buenos Aires, Argentina.
Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Roque Sáenz Peña 352, B1876BXD Bernal, Argentina.
Molecules. 2021 Apr 26;26(9):2514. doi: 10.3390/molecules26092514.
The circadian clock at the hypothalamic suprachiasmatic nucleus (SCN) entrains output rhythms to 24-h light cycles. To entrain by phase-advances, light signaling at the end of subjective night (circadian time 18, CT18) requires free radical nitric oxide (NO•) binding to soluble guanylate cyclase (sGC) heme group, activating the cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). Phase-delays at CT14 seem to be independent of NO•, whose redox-related species were yet to be investigated. Here, the one-electron reduction of NO• nitroxyl was pharmacologically delivered by Angeli's salt (AS) donor to assess its modulation on phase-resetting of locomotor rhythms in hamsters. Intracerebroventricular AS generated nitroxyl at the SCN, promoting phase-delays at CT14, but potentiated light-induced phase-advances at CT18. Glutathione/glutathione disulfide (GSH/GSSG) couple measured in SCN homogenates showed higher values at CT14 (i.e., more reduced) than at CT18 (oxidized). In addition, administration of antioxidants N-acetylcysteine (NAC) and GSH induced delays per se at CT14 but did not affect light-induced advances at CT18. Thus, the relative of NO• nitroxyl generates phase-delays in a reductive SCN environment, while an oxidative favors photic-advances. These data suggest that circadian phase-locking mechanisms should include redox SCN environment, generating relatives of NO•, as well as coupling with the molecular oscillator.
下丘脑视交叉上核(SCN)中的生物钟将输出节律调整为24小时的光周期。为了通过相位提前来调整,在主观夜间结束时(昼夜节律时间18,CT18)的光信号需要自由基一氧化氮(NO•)与可溶性鸟苷酸环化酶(sGC)血红素基团结合,激活环磷酸鸟苷(cGMP)依赖性蛋白激酶(PKG)。CT14时的相位延迟似乎与NO•无关,其氧化还原相关物种尚未得到研究。在此,通过安吉利盐(AS)供体药理学递送NO•硝酰的单电子还原产物,以评估其对仓鼠运动节律相位重置的调节作用。脑室内注射AS在SCN产生硝酰,促进CT14时的相位延迟,但增强CT18时光诱导的相位提前。在SCN匀浆中测得的谷胱甘肽/谷胱甘肽二硫化物(GSH/GSSG)对在CT14时(即更还原)的值高于CT18时(氧化)。此外,给予抗氧化剂N-乙酰半胱氨酸(NAC)和GSH本身在CT14时诱导延迟,但不影响CT18时光诱导的提前。因此,NO•硝酰的相对物在还原性SCN环境中产生相位延迟,而氧化性环境则有利于光诱导的提前。这些数据表明,昼夜节律锁相机制应包括还原性SCN环境、产生NO•的相对物以及与分子振荡器的耦合。