Suppr超能文献

Isolation of cDNAs representing dithiolethione-responsive genes.

作者信息

Primiano T, Gastel J A, Kensler T W, Sutter T R

机构信息

The Department of Environmental Health Sciences, The Johns Hopkins School of Hygiene and Public Health, Baltimore, MD 21205, USA.

出版信息

Carcinogenesis. 1996 Nov;17(11):2297-303. doi: 10.1093/carcin/17.11.2297.

Abstract

Dithiolethiones inhibit tumorigenicity elicited by many structurally diverse carcinogens in numerous target tissues. These protective actions are associated with the induction of several carcinogen detoxification enzymes, some of which have only recently been discovered. In order to identify additional novel inducible detoxification response genes, a cDNA library was prepared from liver of rats treated with 1,2-dithiole-3-thione (D3T) and was screened by a differential hybridization method. Complementary DNA clones for several known D3T-inducible genes were isolated, such as epoxide hydrolase, aflatoxin B1-aldehyde reductase, quinone reductase and multiple subunits of glutathione S-transferase. Clones representing genes not previously associated with detoxification were isolated, including those for ferritin heavy and light subunits, ribosomal proteins L18a and S16 and two novel genes, termed dithiolethione-inducible genes (or DIG-1 and DIG-2). Levels of mRNA recognized by each clone were increased from 2- to 31-fold, with maximum induction between 6 and 30 h after treatment with D3T. Except for epoxide hydrolase, the kinetics of induction of each mRNA was coordinate with increased rates of gene transcription. However, based on the time of response to D3T, at least two sets of responsive genes were identified. One set of genes, including glutathione S-transferase Yp, aflatoxin B1-aldehyde reductase, quinone reductase and DIG-1, had low constitutive and highly inducible expression (approximately 20-fold) and the other, including glutathione S-transferase Ya and Yb, epoxide hydrolase, ferritin heavy and light subunits, ribosomal proteins L18a and S16 and DIG-2, had relatively high constitutive and modestly inducible expression (approximately 5-fold). The simplest explanation for this differential expression of D3T-inducible genes is that multiple regulatory mechanisms govern their response. The transcriptional activation of ferritin, ribosomal protein, DIG-1 and DIG-2 genes in conjunction with those of carcinogen detoxification enzymes suggests that they participate in the pleiotropic cellular defense response to dithiolethiones that inhibits chemically produced tumorigenesis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验