Suppr超能文献

Global effects of fluctuations in neural information processing.

作者信息

Liljenström H

机构信息

Dept. of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, Sweden.

出版信息

Int J Neural Syst. 1996 Sep;7(4):497-505. doi: 10.1142/s0129065796000488.

Abstract

We are interested in how the complex dynamics of the brain, which may include oscillations, chaos and noise, can affect the efficiency of neural information processing. Here, we consider the amplification and functional role of fluctuations, expressed as chaos or noise in the system. Using computer simulations of a neural network model of the olfactory cortex, we demonstrate how microscopic fluctuations can result in global effects at the network level. In particular, we show that the rate of information processing in associative memory tasks can be maximized for optimal noise levels. Noise can also induce transitions between different dynamical states, related to learning and memory. A chaotic-like behavior, induced by noise or by an increase in neuronal excitability, can enhance system performance if it is transient and converges to a limit cycle memory state. The level of accuracy required for correct pattern association further affects the rate of information processing. We discuss how neuromodulatory control of the cortical dynamics can shift the balance between rate and accuracy optimization, as well as between sensitivity and stability.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验