Suppr超能文献

In vitro electro-pharmacological and autoradiographic analyses of muscarinic receptor subtypes in rat hypothalamic ventromedial nucleus: implications for cholinergic regulation of lordosis.

作者信息

Kow L M, Tsai Y F, Weiland N G, McEwen B S, Pfaff D W

机构信息

Rockefeller University, New York, NY 10021, USA.

出版信息

Brain Res. 1995 Oct 2;694(1-2):29-39. doi: 10.1016/0006-8993(95)00747-e.

Abstract

Muscarinic agonists can act through the hypothalamic ventromedial nucleus (VMN) to facilitate lordosis. To elucidate the neuronal mechanism(s) underlying this muscarinic facilitation, effects of muscarinic agents on the single-unit activity of VMN neurons recorded in brain tissue slices of estrogen-primed female rats were analyzed. All the agonists tested, including acetylcholine (ACh), oxotremorine-M (OM), carbachol (CCh) and McN-A-343 (McN), evoked primarily excitation (80-100%), some inhibition (0-20%) and occasional biphasic responses (0-8%). By comparing the response magnitude and the effectiveness in evoking a response, the rank order for evoking excitation, the primary response, was found to be: OM > CCh > ACh approximately McN, which is consistent with that (OM > CCh > McN) for facilitating lordosis reported by others. This consistency and the frequency of its occurrence suggest that the excitatory electric action of the muscarinic agonists is related to their facilitatory behavioral effect. Experiments with antagonists selective for M1 (pirenzepine), M2 (AF-DX 116) and M3 (4-DAMP and p-F-HHSiD) indicate that muscarinic excitations are mediated by M1 and/or M3, but not M2. Since M1 receptors have been shown to be neither sufficient nor necessary to mediate the muscarinic facilitation, M3 receptor may be crucially involved in this behavioral effect. Autoradiographic assays of binding to [3H]4-DAMP with or without pirenzepine and AF-DX 116, also indicate the presence of M3 receptors in the VMN. Quantitative analyses show that the M3 binding was not affected by the in vivo estrogen priming required to permit muscarinic agonists to facilitate lordosis. Thus, while the excitation mediated by M3 is likely to be involved in muscarinic facilitation of lordosis, the regulation of M3 receptor density does not seem to be involved in the permissive

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验