Suppr超能文献

兴奋性神经网络中的同步性。

Synchrony in excitatory neural networks.

作者信息

Hansel D, Mato G, Meunier C

机构信息

Centre de Physique Théorique, UPR014 CNRS, Ecole Polytechnique, Palaiseau, France.

出版信息

Neural Comput. 1995 Mar;7(2):307-37. doi: 10.1162/neco.1995.7.2.307.

Abstract

Synchronization properties of fully connected networks of identical oscillatory neurons are studied, assuming purely excitatory interactions. We analyze their dependence on the time course of the synaptic interaction and on the response of the neurons to small depolarizations. Two types of responses are distinguished. In the first type, neurons always respond to small depolarization by advancing the next spike. In the second type, an excitatory postsynaptic potential (EPSP) received after the refractory period delays the firing of the next spike, while an EPSP received at a later time advances the firing. For these two types of responses we derive general conditions under which excitation destabilizes in-phase synchrony. We show that excitation is generally desynchronizing for neurons with a response of type I but can be synchronizing for responses of type II when the synaptic interactions are fast. These results are illustrated on three models of neurons: the Lapicque integrate-and-fire model, the model of Connor et al., and the Hodgkin-Huxley model. The latter exhibits a type II response, at variance with the first two models, that have type I responses. We then examine the consequences of these results for large networks, focusing on the states of partial coherence that emerge. Finally, we study the Lapicque model and the model of Connor et al. at large coupling and show that excitation can be desynchronizing even beyond the weak coupling regime.

摘要

研究了具有相同振荡神经元的全连接网络的同步特性,假设存在纯粹的兴奋性相互作用。我们分析了它们对突触相互作用时间进程以及神经元对小去极化反应的依赖性。区分了两种类型的反应。在第一种类型中,神经元总是通过提前下一个尖峰来响应小去极化。在第二种类型中,在不应期之后接收到的兴奋性突触后电位(EPSP)会延迟下一个尖峰的发放,而在稍后时间接收到的EPSP会提前发放。对于这两种类型的反应,我们推导了激发破坏同相同步的一般条件。我们表明,对于具有I型反应的神经元,激发通常会导致去同步,但当突触相互作用快速时,对于II型反应,激发可以导致同步。这些结果在三种神经元模型上得到了说明:拉皮克积分发放模型、康纳等人的模型以及霍奇金 - 赫胥黎模型。后者表现出II型反应,这与前两个具有I型反应的模型不同。然后,我们研究了这些结果对大型网络的影响,重点关注出现的部分相干状态。最后,我们研究了大耦合下的拉皮克模型和康纳等人的模型,表明即使在弱耦合区域之外,激发也可能导致去同步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验