Suppr超能文献

感知性幅度调制检测的神经元关联

Neuronal correlates of perceptual amplitude-modulation detection.

作者信息

Lorenzi C, Micheyl C, Berthommier F

机构信息

Département de Psychologie Cognitive, Université Lumière Lyon II, Bron, France.

出版信息

Hear Res. 1995 Oct;90(1-2):219-27. doi: 10.1016/0378-5955(95)00169-9.

Abstract

The goal of the present paper is to relate the coding of amplitude modulation (AM) in the auditory pathway to the behavioral detection performance. To address this issue, the detectability of AM was estimated by modelling a single neuron located in the central nucleus of the inferior colliculus (IC). The computational model is based on cochlear nucleus responses and a coincidence detection mechanism. The model replicated the main feature of the neuronal AM transfer function, namely a bandpass function. The IC-unit model was initially tuned to a 200-Hz modulation frequency. A single neurometric function for AM detection at this modulation frequency was generated using a 2-interval, 2-alternative forced-choice paradigm. On each trial of the experiments, AM was taken to be correctly detected by the model if the number of spikes in response to the modulated signal exceeded the number of spikes in an otherwise identical interval that contained an unmodulated signal. Psychometric functions for 4 human subjects were also measured under the same stimulus conditions. Comparison of the simulated neurometric and psychometric functions suggested that there was sufficient information in the rate response of an IC neuron well-tuned in the modulation-frequency domain to support behavioral detection performance.

摘要

本文的目的是将听觉通路中幅度调制(AM)的编码与行为检测性能联系起来。为了解决这个问题,通过对位于下丘中央核(IC)的单个神经元进行建模来估计AM的可检测性。该计算模型基于耳蜗核反应和一种符合检测机制。该模型复制了神经元AM传递函数的主要特征,即带通函数。IC单元模型最初被调整到200赫兹的调制频率。使用双间隔、双选强制选择范式生成了在此调制频率下AM检测的单个神经测量函数。在实验的每次试验中,如果响应调制信号的尖峰数量超过包含未调制信号的相同间隔内的尖峰数量,则模型认为AM被正确检测到。在相同刺激条件下还测量了4名人类受试者的心理测量函数。模拟的神经测量函数和心理测量函数的比较表明,在调制频率域中调谐良好的IC神经元的速率响应中有足够的信息来支持行为检测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验