Suppr超能文献

肌肉无力评估:正常等长肌力数据的应用。国家等长肌肉力量(NIMS)数据库联盟。

Muscular weakness assessment: use of normal isometric strength data. The National Isometric Muscle Strength (NIMS) Database Consortium.

出版信息

Arch Phys Med Rehabil. 1996 Dec;77(12):1251-5. doi: 10.1016/s0003-9993(96)90188-4.

Abstract

OBJECTIVE

Assessment of muscle strength is vital to the management of patients with muscular weakness. Clinical interpretation of isometric strength data for individual patients has been limited because of the lack of a reference population for comparison. The purpose of this study was to develop regression equations to predict maximal isometric strength based on gender, age, height, and weight. Patients' absolute strength values may then be expressed as a percentage of their predicted values, facilitating the determination of presence and extent of weakness.

DESIGN

Three separate neuromuscular research groups developed databases of normal maximal isometric strength values, using standardized testing procedures. The databases were combined into a single database, and multiple regression equations were formulated for strength prediction for the 20 muscle groups tested.

SETTING

Seven neuromuscular research units, each within the neurology department of a university-based teaching facility.

SUBJECTS

A convenience sample of 493 volunteers who had no medical conditions that would have prohibited them from performing a maximal isometric strength test.

MAIN OUTCOME MEASURE

Maximal isometric strength (kg) of ten muscle groups was measured bilaterally.

RESULTS

Regression equations and 95% prediction intervals are derived from the combined database. A case study demonstrates the use of the predictive equations in determining presence and extent of weakness.

CONCLUSION

Predictive strength equations facilitate assessment of muscular weakness.

摘要

目的

肌肉力量评估对于肌无力患者的管理至关重要。由于缺乏可供比较的参考人群,个体患者等长肌力数据的临床解读受到限制。本研究的目的是基于性别、年龄、身高和体重建立回归方程,以预测最大等长肌力。然后,患者的绝对力量值可以表示为其预测值的百分比,便于确定肌无力的存在与否及其程度。

设计

三个独立的神经肌肉研究小组使用标准化测试程序建立了正常最大等长肌力值的数据库。这些数据库被合并为一个单一数据库,并针对所测试的20个肌肉群制定了多元回归方程以进行力量预测。

地点

七个神经肌肉研究单位,均位于大学教学机构的神经内科内。

研究对象

一个由493名志愿者组成的便利样本,这些志愿者没有会妨碍他们进行最大等长肌力测试的疾病。

主要观察指标

双侧测量十个肌肉群的最大等长肌力(千克)。

结果

从合并数据库中得出回归方程和95%预测区间。一个案例研究展示了预测方程在确定肌无力的存在与否及其程度方面的应用。

结论

预测性力量方程有助于肌无力评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验