Suppr超能文献

主要扫视参数之间的平方根关系。

Square-root relations between main saccadic parameters.

作者信息

Lebedev S, Van Gelder P, Tsui W H

机构信息

Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA.

出版信息

Invest Ophthalmol Vis Sci. 1996 Dec;37(13):2750-8.

PMID:8977491
Abstract

PURPOSE

To derive and evaluate two equations in which saccade duration and peak velocity are proportional to the square root of saccade amplitude.

METHODS

A population of horizontal visually guided saccades in a range of amplitudes from 1.5 degrees to 30 degrees was recorded by means of electro-oculography in eight normal adult subjects. The peak velocity-amplitude data of this population were fitted to four models: inverse linear, exponential, power law, and square root. To approximate the duration-amplitude relation, the square root was tested against the linear and power law models. For each model, the best-fit values of its parameters were estimated by the method of least squares.

RESULTS

When the entire population was used, all tested models displayed comparable goodness of fit, but when different subranges of this population were used, only the square root equations appeared to be robust and acceptably accurate.

CONCLUSIONS

In a restricted range of saccade amplitudes from 1.5 degrees to 30 degrees, the square root model has some advantages over the others commonly used: to express peak velocity and duration as functions of amplitude, it requires the estimation of only two parameters, whereas the others require four. Because of its robustness, this model can be used to evaluate populations of saccadic eye movements with different ranges of amplitudes. The two parameters of the model equations allow a simple and clear physical interpretation.

摘要

目的

推导并评估两个方程,其中扫视持续时间和峰值速度与扫视幅度的平方根成正比。

方法

通过眼电图记录了8名正常成年受试者在1.5度至30度范围内的一系列水平视觉引导扫视。将该群体的峰值速度-幅度数据拟合到四个模型:反线性、指数、幂律和平方根模型。为了近似持续时间-幅度关系,将平方根模型与线性和幂律模型进行了比较。对于每个模型,通过最小二乘法估计其参数的最佳拟合值。

结果

当使用整个群体的数据时,所有测试模型的拟合优度相当,但当使用该群体的不同子范围时,只有平方根方程似乎稳健且准确性可接受。

结论

在1.5度至30度的受限扫视幅度范围内,平方根模型比其他常用模型具有一些优势:将峰值速度和持续时间表示为幅度的函数时,它只需要估计两个参数,而其他模型需要四个。由于其稳健性,该模型可用于评估不同幅度范围的扫视眼动群体。模型方程的两个参数具有简单明了的物理解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验