Suppr超能文献

用于定量构效关系的遗传神经网络:苯二氮䓬对苯二氮䓬/GABAA受体亲和力的改进与应用

Genetic neural networks for quantitative structure-activity relationships: improvements and application of benzodiazepine affinity for benzodiazepine/GABAA receptors.

作者信息

So S S, Karplus M

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

J Med Chem. 1996 Dec 20;39(26):5246-56. doi: 10.1021/jm960536o.

Abstract

A novel tool, called a genetic neural network (GNN), has been developed for obtaining quantitative structure-activity relationships (QSAR) for high-dimensional data sets (J. Med. Chem. 1996, 39, 1521-1530). The GNN method uses a neural network to correlate activity with descriptors that are preselected by a genetic algorithm. To provide an extended test of the GNN method, the data on 57 benzodiazepines given by Maddalena and Johnston (MJ; J. Med. Chem. 1995, 38, 715-724) have been examined with an enhanced version of GNN, and the results are compared with the excellent QSAR of MJ. The problematic steepest descent training has been replaced by the scaled conjugate gradient algorithm. This leads to a substantial gain in performance in both robustness of prediction and speed of computation. The cross-validation GNN simulation and the subsequent run based on an unbiased and more efficient protocol led to the discovery of other 10-descriptor QSARs that are superior to the best model of MJ based on backward elimination selection and neural network training. Results from a series of GNNs with a different number of inputs showed that a neural network with fewer inputs can produce QSARs as good as or even better than those with higher dimensions. The top-ranking models from a GNN simulation using only six input descriptors are presented, and the chemical significance of the chosen descriptors is discussed. The statistical significance of these GNN QSARs is validated. The best QSARs are used to provide a graphical tool that aids the design of new drug analogues. By replacing functional groups at the 7- and 2'-positions with ones that have optimal substituent parameters, a number of new benzodiazepines with high potency are predicted.

摘要

一种名为基因神经网络(GNN)的新型工具已被开发出来,用于获取高维数据集的定量构效关系(QSAR)(《药物化学杂志》,1996年,第39卷,第1521 - 1530页)。GNN方法利用神经网络将活性与通过遗传算法预先选择的描述符相关联。为了对GNN方法进行扩展测试,我们使用GNN的增强版本检查了Maddalena和Johnston(MJ;《药物化学杂志》,1995年,第38卷,第715 - 724页)给出的57种苯二氮䓬的数据,并将结果与MJ出色的QSAR进行比较。有问题的最速下降训练已被缩放共轭梯度算法所取代。这在预测的稳健性和计算速度方面都带来了显著的性能提升。交叉验证的GNN模拟以及基于无偏且更高效协议的后续运行导致发现了其他优于基于向后消除选择和神经网络训练的MJ最佳模型的10描述符QSAR。一系列具有不同输入数量的GNN结果表明,输入较少的神经网络可以产生与高维神经网络一样好甚至更好的QSAR。展示了仅使用六个输入描述符的GNN模拟中的顶级模型,并讨论了所选描述符的化学意义。这些GNN QSAR的统计显著性得到了验证。最佳的QSAR被用于提供一种有助于新药类似物设计的图形工具。通过用具有最佳取代基参数的官能团取代7位和2'位上的官能团,预测了许多高效的新型苯二氮䓬。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验