Suppr超能文献

从定量构效关系到定量结构-体内代谢关系:探寻增强的计算毒理学模型

From QSAR to QSIIR: searching for enhanced computational toxicology models.

作者信息

Zhu Hao

机构信息

Department of Chemistry, The Rutgers Center for Computational and Integrative Biology, Rutgers University, 315 Penn St., Camden, NJ, 08102, USA.

出版信息

Methods Mol Biol. 2013;930:53-65. doi: 10.1007/978-1-62703-059-5_3.

Abstract

Quantitative structure activity relationship (QSAR) is the most frequently used modeling approach to explore the dependency of biological, toxicological, or other types of activities/properties of chemicals on their molecular features. In the past two decades, QSAR modeling has been used extensively in drug discovery process. However, the predictive models resulted from QSAR studies have limited use for chemical risk assessment, especially for animal and human toxicity evaluations, due to the low predictivity of new compounds. To develop enhanced toxicity models with independently validated external prediction power, novel modeling protocols were pursued by computational toxicologists based on rapidly increasing toxicity testing data in recent years. This chapter reviews the recent effort in our laboratory to incorporate the biological testing results as descriptors in the toxicity modeling process. This effort extended the concept of QSAR to quantitative structure in vitro-in vivo relationship (QSIIR). The QSIIR study examples provided in this chapter indicate that the QSIIR models that based on the hybrid (biological and chemical) descriptors are indeed superior to the conventional QSAR models that only based on chemical descriptors for several animal toxicity endpoints. We believe that the applications introduced in this review will be of interest and value to researchers working in the field of computational drug discovery and environmental chemical risk assessment.

摘要

定量构效关系(QSAR)是探索化学物质的生物、毒理或其他类型的活性/性质与其分子特征之间相关性时最常用的建模方法。在过去二十年中,QSAR建模已在药物发现过程中得到广泛应用。然而,由于新化合物的预测能力较低,QSAR研究得出的预测模型在化学风险评估中,尤其是在动物和人类毒性评估中的应用有限。为了开发具有独立验证的外部预测能力的增强毒性模型,计算毒理学家基于近年来快速增长的毒性测试数据,采用了新颖的建模方案。本章回顾了我们实验室最近将生物测试结果作为描述符纳入毒性建模过程的工作。这一工作将QSAR的概念扩展到了定量体外-体内构效关系(QSIIR)。本章提供的QSIIR研究示例表明,基于混合(生物和化学)描述符的QSIIR模型在几个动物毒性终点方面确实优于仅基于化学描述符的传统QSAR模型。我们相信,本综述中介绍的应用将对从事计算药物发现和环境化学风险评估领域的研究人员具有吸引力和价值。

相似文献

1
From QSAR to QSIIR: searching for enhanced computational toxicology models.
Methods Mol Biol. 2013;930:53-65. doi: 10.1007/978-1-62703-059-5_3.
4
Computer-modeling-based QSARs for analyzing experimental data on biotransformation and toxicity.
Toxicol In Vitro. 2001 Aug-Oct;15(4-5):539-51. doi: 10.1016/s0887-2333(01)00060-1.
6
7
QSAR-QSIIR-based prediction of bioconcentration factor using machine learning and preliminary application.
Environ Int. 2023 Jul;177:108003. doi: 10.1016/j.envint.2023.108003. Epub 2023 Jun 1.
8
Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential.
Toxicology. 2013 Nov 8;313(1):15-23. doi: 10.1016/j.tox.2012.11.005. Epub 2012 Nov 16.
9
Testing computational toxicology models with phytochemicals.
Mol Nutr Food Res. 2010 Feb;54(2):186-94. doi: 10.1002/mnfr.200900259.
10
QSAR Modeling of ToxCast Assays Relevant to the Molecular Initiating Events of AOPs Leading to Hepatic Steatosis.
J Chem Inf Model. 2018 Aug 27;58(8):1501-1517. doi: 10.1021/acs.jcim.8b00297. Epub 2018 Jul 26.

引用本文的文献

1
Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks.
Heliyon. 2023 Dec 23;10(1):e23810. doi: 10.1016/j.heliyon.2023.e23810. eCollection 2024 Jan 15.
2
3
Characterizing cleft palate toxicants using ToxCast data, chemical structure, and the biomedical literature.
Birth Defects Res. 2020 Jan 1;112(1):19-39. doi: 10.1002/bdr2.1581. Epub 2019 Aug 30.
4
Microfluidic-Based Multi-Organ Platforms for Drug Discovery.
Micromachines (Basel). 2016 Sep 8;7(9):162. doi: 10.3390/mi7090162.
5
In silico toxicology: computational methods for the prediction of chemical toxicity.
Wiley Interdiscip Rev Comput Mol Sci. 2016 Mar;6(2):147-172. doi: 10.1002/wcms.1240. Epub 2016 Jan 6.

本文引用的文献

1
2
The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform.
Drug Discov Today. 2010 Dec;15(23-24):997-1007. doi: 10.1016/j.drudis.2010.07.007. Epub 2010 Aug 11.
4
Computational toxicology approaches at the US Food and Drug Administration.
Altern Lab Anim. 2009 Nov;37(5):523-31. doi: 10.1177/026119290903700509.
5
The pilot phase of the NIH Chemical Genomics Center.
Curr Top Med Chem. 2009;9(13):1181-93. doi: 10.2174/156802609789753644.
6
In silico toxicology for the pharmaceutical sciences.
Toxicol Appl Pharmacol. 2009 Dec 15;241(3):356-70. doi: 10.1016/j.taap.2009.08.022. Epub 2009 Aug 28.
8
The status of in vitro toxicity studies in the risk assessment of nanomaterials.
Nanomedicine (Lond). 2009 Aug;4(6):669-85. doi: 10.2217/nnm.09.40.
9
Liver tissue engineering in the evaluation of drug safety.
Expert Opin Drug Metab Toxicol. 2009 Oct;5(10):1159-74. doi: 10.1517/17425250903160664.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验