Suppr超能文献

荚膜红细菌的HupUV蛋白可结合H2:来自H-D交换反应的证据。

HupUV proteins of Rhodobacter capsulatus can bind H2: evidence from the H-D exchange reaction.

作者信息

Vignais P M, Dimon B, Zorin N A, Colbeau A, Elsen S

机构信息

CEA/Grenoble, Laboratoire de Biochimie Microbienne (Centre National de la Recherche Scientifique Unité de Recherche Associée no. 1130)/Département de Biologie Moléculaire et Structurale, France.

出版信息

J Bacteriol. 1997 Jan;179(1):290-2. doi: 10.1128/jb.179.1.290-292.1997.

Abstract

The H-D exchange reaction has been measured with the D2-H2O system, for Rhodobacter capsulatus JP91, which lacks the hupSL-encoded hydrogenase, and R. capsulatus BSE16, which lacks the HupUV proteins. The hupUV gene products, expressed from plasmid pAC206, are shown to catalyze an H-D exchange reaction distinguishable from the H-D exchange due to the membrane-bound, hupSL-encoded hydrogenase. In the presence of O2, the uptake hydrogenase of BSE16 cells catalyzed a rapid uptake and oxidation of H2, D2, and HD present in the system, and its activity (H-D exchange, H2 evolution in presence of reduced methyl viologen [MV+]) depended on the external pH, while the H-D exchange due to HupUV remained insensitive to external pH and O2. These data suggest that the HupSL dimer is periplasmically oriented, while the HupUV proteins are in the cytoplasmic compartment.

摘要

已对缺乏hupSL编码氢化酶的荚膜红细菌JP91和缺乏HupUV蛋白的荚膜红细菌BSE16,在D2-H2O体系中进行了H-D交换反应的测定。从质粒pAC206表达的hupUV基因产物可催化一种H-D交换反应,该反应与由膜结合的hupSL编码氢化酶引起的H-D交换不同。在O2存在的情况下,BSE16细胞的摄取氢化酶催化体系中存在的H2、D2和HD的快速摄取和氧化,其活性(H-D交换、在还原甲基紫精[MV+]存在下的H2释放)取决于外部pH值,而由HupUV引起的H-D交换对外部pH值和O2不敏感。这些数据表明,HupSL二聚体位于周质空间,而HupUV蛋白位于细胞质区室。

相似文献

1
HupUV proteins of Rhodobacter capsulatus can bind H2: evidence from the H-D exchange reaction.
J Bacteriol. 1997 Jan;179(1):290-2. doi: 10.1128/jb.179.1.290-292.1997.
3
Rhodobacter capsulatus HypF is involved in regulation of hydrogenase synthesis through the HupUV proteins.
Eur J Biochem. 1998 Jan 15;251(1-2):65-71. doi: 10.1046/j.1432-1327.1998.2510065.x.
6
Transcriptional regulation of the uptake [NiFe]hydrogenase genes in Rhodobacter capsulatus.
Biochem Soc Trans. 2005 Feb;33(Pt 1):28-32. doi: 10.1042/BST0330028.
7
The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus.
J Bacteriol. 1996 Sep;178(17):5174-81. doi: 10.1128/jb.178.17.5174-5181.1996.
8
Hydrogen independent expression of hupSL genes in Thiocapsa roseopersicina BBS.
FEBS J. 2005 Sep;272(18):4807-16. doi: 10.1111/j.1742-4658.2005.04896.x.
10

引用本文的文献

1
H Kinetic Isotope Fractionation Superimposed by Equilibrium Isotope Fractionation During Hydrogenase Activity of Strain Miyazaki.
Front Microbiol. 2019 Jul 10;10:1545. doi: 10.3389/fmicb.2019.01545. eCollection 2019.
2
Engineering photosynthetic organisms for the production of biohydrogen.
Photosynth Res. 2015 Mar;123(3):241-53. doi: 10.1007/s11120-014-9991-x. Epub 2014 Mar 27.
3
Metabolically engineered bacteria for producing hydrogen via fermentation.
Microb Biotechnol. 2008 Mar;1(2):107-25. doi: 10.1111/j.1751-7915.2007.00009.x.
6
Hydrogenases and hydrogen metabolism of cyanobacteria.
Microbiol Mol Biol Rev. 2002 Mar;66(1):1-20, table of contents. doi: 10.1128/MMBR.66.1.1-20.2002.
7
Evidence for a fourth hydrogenase in Desulfovibrio fructosovorans.
J Bacteriol. 2002 Feb;184(3):853-6. doi: 10.1128/JB.184.3.853-856.2002.
8
Reduction of technetium(VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase.
Appl Environ Microbiol. 2001 Oct;67(10):4583-7. doi: 10.1128/AEM.67.10.4583-4587.2001.

本文引用的文献

1
2
The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus.
J Bacteriol. 1996 Sep;178(17):5174-81. doi: 10.1128/jb.178.17.5174-5181.1996.
4
Microbial hydrogenases: primary structure, classification, signatures and phylogeny.
FEMS Microbiol Rev. 1993 Apr;10(3-4):243-69. doi: 10.1111/j.1574-6968.1993.tb05870.x.
6
Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas.
Nature. 1995 Feb 16;373(6515):580-7. doi: 10.1038/373580a0.
7
Nickel hydrogenases: in search of the active site.
Biochim Biophys Acta. 1994 Dec 30;1188(3):167-204. doi: 10.1016/0005-2728(94)90036-1.
8
Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti.
Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347-51. doi: 10.1073/pnas.77.12.7347.
9
Continuous monitoring, by mass spectrometry, of H2 production and recycling in Rhodopseudomonas capsulata.
J Bacteriol. 1980 Aug;143(2):628-36. doi: 10.1128/jb.143.2.628-636.1980.
10
Genetic recombination in Rhodopseudomonas capsulata.
Proc Natl Acad Sci U S A. 1974 Mar;71(3):971-3. doi: 10.1073/pnas.71.3.971.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验