Lin L F, Oeun S, Houng A, Reed G L
Cardiovascular Biology Laboratory, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
Biochemistry. 1996 Dec 24;35(51):16879-85. doi: 10.1021/bi961531w.
Through a unique but poorly understood mechanism, streptokinase (SK) interacts with human plasminogen to generate an "activator complex" that efficiently cleaves substrate plasminogen molecules. Previous studies have suggested that lysine residues in SK may play a role in the binding and function of the activator complex. To investigate this hypothesis, 10 different lysine residues in the plasminogen binding region of SK were altered to construct 8 recombinant (r) SK mutants. Only one double mutant, rSKK256,257A (replacing Lys with Ala at residues 256 and 257), showed a statistically significant reduction (63%) in binding affinity for Glu-plasminogen. This mutant also displayed a lagtime in the appearance of maximal activity, and modest impairments (2-5-fold) in kinetic parameters for amidolytic and plasminogen activator activity compared to rSK. In contrast, another mutant, rSKK332,334A, formed an activator complex with profound and nearly selective defects in the catalytic processing of substrate plasminogen molecules. When compared to rSK in kinetic assays of plasminogen activation, the rSKK332,334A mutant formed an activator complex that bound substrate plasminogens normally (normal K(m), but its ability to activate or cleave these molecules (kcat) was reduced by 34-fold. In contrast, in amidolytic assays, the kinetic parameters of rSKK332,334A showed only minor differences (< 2-fold) from rSK. Similarly, the binding affinity of this mutant to human Glu-plasminogen was indistinguishable from rSK [(2.6 +/- 0.8) x 10(9) vs (2.4 +/- 0.2) x 10(9) M-1, respectively]. In summary, these experiments have identified lysine residues in a plasminogen binding region of SK which appear to be necessary for normal high-affinity binding to plasminogen, and for the efficient catalytic processing of substrate plasminogen molecules by the activator complex.
通过一种独特但了解甚少的机制,链激酶(SK)与人纤溶酶原相互作用生成一种“激活剂复合物”,该复合物能有效地切割底物纤溶酶原分子。先前的研究表明,SK中的赖氨酸残基可能在激活剂复合物的结合和功能中起作用。为了研究这一假设,对SK的纤溶酶原结合区域中的10个不同赖氨酸残基进行了改造,构建了8种重组(r)SK突变体。只有一个双突变体rSKK256,257A(在第256和257位残基处用丙氨酸取代赖氨酸)对Glu-纤溶酶原的结合亲和力有统计学意义的显著降低(63%)。该突变体在最大活性出现时也表现出延迟时间,并且与rSK相比,在酰胺水解和纤溶酶原激活剂活性的动力学参数方面有适度损害(2 - 5倍)。相比之下,另一个突变体rSKK332,334A形成了一种激活剂复合物,在底物纤溶酶原分子的催化加工方面存在严重且几乎具有选择性的缺陷。在纤溶酶原激活的动力学测定中与rSK相比,rSKK332,334A突变体形成的激活剂复合物与底物纤溶酶原的结合正常(正常K(m)),但其激活或切割这些分子的能力(kcat)降低了34倍。相比之下,在酰胺水解测定中,rSKK332,334A的动力学参数与rSK仅显示出微小差异(< 2倍)。同样,该突变体与人Glu-纤溶酶原的结合亲和力与rSK无法区分[分别为(2.6 ± 0.8)×10(9) 与(2.4 ± 0.2)×10(9) M-1]。总之,这些实验确定了SK的纤溶酶原结合区域中的赖氨酸残基,这些残基似乎对于与纤溶酶原的正常高亲和力结合以及激活剂复合物对底物纤溶酶原分子的有效催化加工是必需的。