Eger E I, Koblin D D, Bowland T, Ionescu P, Laster M J, Fang Z, Gong D, Sonner J, Weiskopf R B
Department of Anesthesia, University of California, San Francisco 94143-0464, USA.
Anesth Analg. 1997 Jan;84(1):160-8. doi: 10.1097/00000539-199701000-00029.
Present package labeling for sevoflurane recommends the use of fresh gas flow rates of 2 L/min or more when delivering anesthesia with sevoflurane. This recommendation resulted from a concern about the potential nephrotoxicity of a degradation product of sevoflurane, "Compound A," produced by the action of carbon dioxide absorbents on sevoflurane. To assess the adequacy of this recommendation, we compared the nephrotoxicity of 8 h of 1.25 minimum alveolar anesthetic concentration (MAC) sevoflurane (n = 10) versus desflurane (n = 9) in fluid-restricted (i.e., nothing by mouth overnight) volunteers when the anesthetic was given in a standard circle absorber anesthetic system at 2 L/min. Subjects were tested for markers of renal injury (urinary albumin, glucose, alpha-glutathione-S-transferase [GST], and pi-GST; and serum creatinine and blood urea nitrogen [BUN]) before and 1, 2, 3, and/or 5-7 days after anesthesia. Desflurane did not produce renal injury. Rebreathing of sevoflurane produced average inspired concentrations of Compound A of 41 +/- 3 ppm (mean +/- SD). Sevoflurane was associated with transient injury to: 1) the glomerulus, as revealed by postanesthetic albuminuria; 2) the proximal tubule, as revealed by postanesthetic glucosuria and increased urinary alpha-GST; and 3) the distal tubule, as revealed by postanesthetic increased urinary pi-GST. These effects varied greatly (e.g., on postanesthesia Day 3, the 24-h albumin excretion was < 0.03 g (normal) for one volunteer; 0.03-1 g for five others; 1-2 g for two others; 2.1 g for one volunteer; and 4.4 g for another volunteer). Neither anesthetic affected serum creatinine or BUN, nor changed the ability of the kidney to concentrate urine in response to vasopressin, 5 U/70 kg subcutaneously (i.e., these measures failed to reveal the injury produced). In addition, sevoflurane, but not desflurane, caused small postanesthetic increases in serum alanine aminotransferase (ALT), suggesting mild, transient hepatic injury.
目前七氟烷的包装标签建议,在使用七氟烷进行麻醉时,新鲜气体流速应达到2升/分钟或更高。这一建议源于对七氟烷一种降解产物“化合物A”潜在肾毒性的担忧,该产物是由二氧化碳吸收剂作用于七氟烷而产生的。为评估这一建议是否充分,我们在液体受限(即过夜禁食)的志愿者中,将以2升/分钟的流速在标准循环吸收式麻醉系统中给予的1.25倍最低肺泡有效浓度(MAC)七氟烷(n = 10)与地氟烷(n = 9)进行了8小时的肾毒性比较。在麻醉前以及麻醉后1、2、3和/或5 - 7天,对受试者进行肾损伤标志物检测(尿白蛋白、葡萄糖、α - 谷胱甘肽 - S - 转移酶[GST]和π - GST;以及血清肌酐和血尿素氮[BUN])。地氟烷未产生肾损伤。七氟烷再呼吸产生的化合物A平均吸入浓度为41±3 ppm(平均值±标准差)。七氟烷与以下方面的短暂损伤有关:1)肾小球,表现为麻醉后蛋白尿;2)近端肾小管,表现为麻醉后糖尿和尿α - GST增加;3)远端肾小管,表现为麻醉后尿π - GST增加。这些影响差异很大(例如,在麻醉后第3天,一名志愿者24小时白蛋白排泄量<0.03克(正常);另外五名志愿者为0.03 - 1克;两名志愿者为1 - 2克;一名志愿者为2.1克;另一名志愿者为4.4克)。两种麻醉药均未影响血清肌酐或BUN,也未改变肾脏对皮下注射5单位/70千克血管加压素的尿液浓缩能力(即这些指标未能显示出所产生的损伤)。此外,七氟烷而非地氟烷导致麻醉后血清丙氨酸氨基转移酶(ALT)略有升高,提示存在轻度短暂性肝损伤。