Keall P J, Hoban P W
Medial Physics Department, Royal Adelaide Hospital, Physics and Mathematical Physics Department, University of Adelaide.
Med Phys. 1996 Dec;23(12):2023-34. doi: 10.1118/1.597842.
An electron beam dose calculation algorithm has been developed which is based on a superposition of pregenerated Monte Carlo electron track kernels. Electrons are transported through media of varying density and atomic number using electron tracks produced in water. The perturbation of the electron fluence due to each material encountered by the electrons is explicitly accounted for by considering the effect of (i) varying stopping power, (ii) scattering power, and (iii) radiation yield. For each step of every electron track, these parameters affect the step length, the step direction, and for energy deposited in that step respectively. Dose distributions in both homogeneous water and nonwaterlike phantoms, and heterogeneous phantoms show consistent agreement with "standard" Monte Carlo results. For the same statistical uncertainty in broad beam geometries, this new calculation method uses a factor of 9 less computation time than a full Monte Carlo simulation.
已经开发出一种基于预生成的蒙特卡罗电子轨迹核叠加的电子束剂量计算算法。利用在水中产生的电子轨迹,电子在不同密度和原子序数的介质中传输。通过考虑(i)变化的阻止本领、(ii)散射本领和(iii)辐射产额的影响,明确地考虑了电子遇到的每种材料对电子注量的扰动。对于每个电子轨迹的每一步,这些参数分别影响步长、步方向以及该步中沉积的能量。均匀水模、非水状模体和非均匀模体中的剂量分布与“标准”蒙特卡罗结果显示出一致的一致性。对于宽束几何形状中相同的统计不确定性,这种新的计算方法比全蒙特卡罗模拟使用的计算时间少9倍。