Suppr超能文献

Differential expression of type I, II, and V adenylyl cyclase gene in the postnatal developing rat brain.

作者信息

Matsuoka I, Suzuki Y, Defer N, Nakanishi H, Hanoune J

机构信息

Department of Pharmacology, Fukushima Medical College, Japan.

出版信息

J Neurochem. 1997 Feb;68(2):498-506. doi: 10.1046/j.1471-4159.1997.68020498.x.

Abstract

The developmental changes in the expression of mRNA encoding three major brain adenylyl cyclase (AC; EC 4.6.1.1) subtypes, type I (AC1), II (AC2), and V (AC5), were examined by in situ hybridization in rat brain from neonate to adult. During the early postnatal stage, levels of AC1 transcripts were very high in the cerebral cortex, striatum, thalamus, brainstem, and inferior colliculus. Then, AC1 mRNA levels rapidly decreased to the levels observed in the adult brain. In contrast, AC1 transcripts were very low at the early postnatal stage in the cerebellum and hippocampus and markedly increased during the second postnatal week. AC2 mRNA was widely distributed in rat brain throughout the development, and levels did not vary with different ages of the animal. AC5 mRNA was expressed to a limited extent in the neonatal brain, but levels dramatically increased during the second postnatal week in restricted regions, including the striatum, nucleus accumbens, and olfactory tubercle. The developing profiles of three AC gene transcripts were confirmed by northern blot analyses with mRNA isolated from different brain regions at different postnatal stages. In addition, the basal and forskolin-, GTP gamma S-, or Ca2+/calmodulin-stimulated AC activity in plasma membrane preparations obtained from different brain regions at different ages were correlated with the age-dependent changes in the region-specific AC mRNA levels. These results demonstrate that different AC subtypes are expressed in the developing rat brain in a region- and age-specific manner, suggesting specific roles not only in the synaptic transmission but also in the differentiation and maturation of neuronal cells in the developing brain.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验