Suppr超能文献

来自大肠杆菌的铜锌超氧化物歧化酶在高蛋白浓度下保持单体结构。所有细菌铜蛋白中亚基相互作用改变的证据。

The Cu,Zn superoxide dismutase from Escherichia coli retains monomeric structure at high protein concentration. Evidence for altered subunit interaction in all the bacteriocupreins.

作者信息

Battistoni A, Folcarelli S, Gabbianelli R, Capo C, Rotilio G

机构信息

Department of Biology, University of Rome Tor Vergata, Italy.

出版信息

Biochem J. 1996 Dec 15;320 ( Pt 3)(Pt 3):713-6. doi: 10.1042/bj3200713.

Abstract

Gel-filtration chromatography experiments performed at high protein concentrations demonstrate that the Cu,Zn superoxide dismutase from Escherichia coli is monomeric irrespective of the buffer and of ionic strength. The catalytic activity of the recombinant enzyme is comparable with that of eukaryotic isoenzymes, indicating that the dimeric structure commonly found in Cu,Zn superoxide dismutases is not necessary to ensure efficient catalysis. The analysis of the amino acid sequences suggests that an altered interaction between subunits occurs in all bacterial Cu,Zn superoxide dismutases. The substitution of hydrophobic residues with charged ones at positions located at the dimer interface of all known Cu,Zn superoxide dismutases could be specifically responsible for the monomeric structure of the E. coli enzyme.

摘要

在高蛋白浓度下进行的凝胶过滤色谱实验表明,来自大肠杆菌的铜锌超氧化物歧化酶是单体,与缓冲液和离子强度无关。重组酶的催化活性与真核同工酶相当,这表明铜锌超氧化物歧化酶中常见的二聚体结构对于确保高效催化并非必需。氨基酸序列分析表明,所有细菌铜锌超氧化物歧化酶中亚基间的相互作用都发生了改变。在所有已知铜锌超氧化物歧化酶二聚体界面处的位置用带电荷的残基取代疏水残基可能是大肠杆菌酶单体结构的具体原因。

相似文献

2
Evolutionary constraints for dimer formation in prokaryotic Cu,Zn superoxide dismutase.
J Mol Biol. 1999 Jan 8;285(1):283-96. doi: 10.1006/jmbi.1998.2267.
5
Copper/zinc-superoxide dismutase from lemon cDNA and enzyme stability.
J Agric Food Chem. 2002 Dec 4;50(25):7264-70. doi: 10.1021/jf0207070.
6
Single mutation induces a metal-dependent subunit association in dimeric Cu,Zn superoxide dismutase.
Biochem Biophys Res Commun. 2000 May 27;272(1):81-3. doi: 10.1006/bbrc.2000.2730.
8
A novel heme protein, the Cu,Zn-superoxide dismutase from Haemophilus ducreyi.
J Biol Chem. 2001 Aug 10;276(32):30326-34. doi: 10.1074/jbc.M010488200. Epub 2001 May 21.
10
Molecular cloning and characterization of Siamese crocodile (Crocodylus siamensis) copper, zinc superoxide dismutase (CSI-Cu,Zn-SOD) gene.
Comp Biochem Physiol A Mol Integr Physiol. 2016 Jan;191:187-195. doi: 10.1016/j.cbpa.2015.10.028. Epub 2015 Oct 31.

引用本文的文献

1
Molecular recognition and maturation of SOD1 by its evolutionarily destabilised cognate chaperone hCCS.
PLoS Biol. 2019 Feb 8;17(2):e3000141. doi: 10.1371/journal.pbio.3000141. eCollection 2019 Feb.
2
A primary role for disulfide formation in the productive folding of prokaryotic Cu,Zn-superoxide dismutase.
J Biol Chem. 2014 Jul 18;289(29):20139-49. doi: 10.1074/jbc.M114.567677. Epub 2014 Jun 10.
3
Detection, distribution and characterization of novel superoxide dismutases from Yersinia enterocolitica Biovar 1A.
PLoS One. 2013 May 21;8(5):e63919. doi: 10.1371/journal.pone.0063919. Print 2013.
6
Regulatory and structural differences in the Cu,Zn-superoxide dismutases of Salmonella enterica and their significance for virulence.
J Biol Chem. 2008 May 16;283(20):13688-99. doi: 10.1074/jbc.M710499200. Epub 2008 Mar 24.
7
Amsacta moorei entomopoxvirus expresses an active superoxide dismutase.
J Virol. 2004 Oct;78(19):10265-75. doi: 10.1128/JVI.78.19.10265-10275.2004.

本文引用的文献

2
Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli.
J Bacteriol. 1996 May;178(9):2564-71. doi: 10.1128/jb.178.9.2564-2571.1996.
3
Conserved patterns in the Cu,Zn superoxide dismutase family.
J Mol Biol. 1994 May 6;238(3):366-86. doi: 10.1006/jmbi.1994.1298.
10
Bacterial [Cu,Zn]-superoxide dismutase: phylogenetically distinct from the eukaryotic enzyme, and not so rare after all!
Microbiology (Reading). 1995 Sep;141 ( Pt 9):2271-9. doi: 10.1099/13500872-141-9-2271.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验