Suppr超能文献

编码大肠杆菌铜锌超氧化物歧化酶的sodC基因的克隆与分析

Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli.

作者信息

Imlay K R, Imlay J A

机构信息

Department of Microbiology, University of Illinois, Urbana 61801, USA.

出版信息

J Bacteriol. 1996 May;178(9):2564-71. doi: 10.1128/jb.178.9.2564-2571.1996.

Abstract

Benov and Fridovich recently reported the existence of a copper- and zinc-containing superoxide dismutase (CuZnSOD) in Escherichia coli (L. T. Benov and I. Fridovich, J. Biol. Chem. 269:25310-25314,1994). We have used the N-terminal protein sequence to isolate the gene encoding this enzyme. The gene, denoted sodC, is located at 37.1 min on the chromosome, adjacent to lhr and sodB. A monocistronic transcript of sodC accumulates only in stationary phase. The presence of a conventional leader sequence is consistent with physical data indicating that the E. coli enzyme, like other bacterial CuZnSODs, is secreted into the periplasm. Because superoxide cannot cross membranes, this localization indicates that the enzyme has evolved to defend periplasmic biomolecules against an extracytoplasmic superoxide source. Neither the source nor the target of the superoxide is known. Although once considered an exclusively eukaryotic enzyme, CuZnSOD has now been found in species that span three subdivisions of the purple bacteria. The bacterial CuZnSODs are more homologous to one another than to the eukaryotic enzymes, but active-site residues and structural motifs are clearly shared by both families of enzymes. The use of copper and an invariant disulfide bond suggest that the ancestral gene of present-day CuZnSODs evolved in an aerobic environment, long after the evolutionary split between the eukaryotes and the eubacteria. If so, a CuZnSOD gene must have been transferred laterally between members of these domains. The eukaryotic SODs most closely resemble that of Caulobacter crescentus, a relatively close descendant of the mitochondrial ancestor, suggesting that sodC may have entered the eukaryotes during the establishment of mitochondria.

摘要

贝诺夫和弗里多维奇最近报道了在大肠杆菌中存在一种含铜和锌的超氧化物歧化酶(CuZnSOD)(L.T.贝诺夫和I.弗里多维奇,《生物化学杂志》269:25310 - 25314,1994年)。我们利用该酶的N端蛋白质序列分离出了编码此酶的基因。这个基因,命名为sodC,位于染色体上37.1分钟处,与lhr和sodB相邻。sodC的单顺反子转录本仅在稳定期积累。存在一个传统的前导序列,这与物理数据一致,该物理数据表明大肠杆菌的这种酶,像其他细菌的CuZnSOD一样,被分泌到周质中。由于超氧化物不能穿过细胞膜,这种定位表明该酶已经进化到可以保护周质生物分子免受胞外超氧化物源的侵害。超氧化物的来源和靶点均未知。尽管CuZnSOD曾一度被认为是一种仅存在于真核生物中的酶,但现在已在跨越紫色细菌三个亚类的物种中发现了它。细菌的CuZnSOD彼此之间的同源性高于它们与真核生物酶的同源性,但这两个酶家族的活性位点残基和结构基序显然是相同的。铜的使用和一个不变的二硫键表明,当今CuZnSOD的祖先基因是在需氧环境中进化而来的,这发生在真核生物和真细菌进化分支很久之后。如果是这样,那么一个CuZnSOD基因一定是在这些域的成员之间横向转移的。真核生物的SOD与新月柄杆菌的SOD最为相似,新月柄杆菌是线粒体祖先的一个相对较近的后代,这表明sodC可能是在建立线粒体的过程中进入真核生物的。

相似文献

1
Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli.
J Bacteriol. 1996 May;178(9):2564-71. doi: 10.1128/jb.178.9.2564-2571.1996.
3
Copper-zinc superoxide dismutase of Haemophilus influenzae and H. parainfluenzae.
J Bacteriol. 1991 Dec;173(23):7449-57. doi: 10.1128/jb.173.23.7449-7457.1991.
4
Cloning and sequencing of the gene encoding the Cu,Zn-superoxide dismutase of Haemophilus ducreyi.
Gene. 1996 Dec 12;183(1-2):35-40. doi: 10.1016/s0378-1119(96)00417-9.
6
Molecular characterization of a manganese superoxide dismutase and copper/zinc superoxide dismutase from the mussel Mytilus galloprovincialis.
Fish Shellfish Immunol. 2013 May;34(5):1345-51. doi: 10.1016/j.fsi.2013.01.011. Epub 2013 Feb 24.
7
Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary-phase survival.
J Bacteriol. 1996 Mar;178(6):1578-84. doi: 10.1128/jb.178.6.1578-1584.1996.
8
Cloning and molecular characterization of Cu,Zn superoxide dismutase from Actinobacillus pleuropneumoniae.
Infect Immun. 1996 Dec;64(12):5035-41. doi: 10.1128/iai.64.12.5035-5041.1996.
9
The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli.
Mol Microbiol. 1999 Apr;32(1):179-91. doi: 10.1046/j.1365-2958.1999.01343.x.

引用本文的文献

1
Superoxide dismutase VPA1514 in Vibrio parahaemolyticus protects against environmental stresses.
PLoS One. 2025 Aug 14;20(8):e0329351. doi: 10.1371/journal.pone.0329351. eCollection 2025.
2
Manipulating Intracellular Oxidative Conditions to Enhance Porphyrin Production in .
Bioengineering (Basel). 2025 Jan 17;12(1):83. doi: 10.3390/bioengineering12010083.
3
Mechanism of cotton resistance to abiotic stress, and recent research advances in the osmoregulation related genes.
Front Plant Sci. 2022 Aug 17;13:972635. doi: 10.3389/fpls.2022.972635. eCollection 2022.
4
Unique underlying principles shaping copper homeostasis networks.
J Biol Inorg Chem. 2022 Sep;27(6):509-528. doi: 10.1007/s00775-022-01947-2. Epub 2022 Jul 8.
6
Copper primes adaptation of uropathogenic Escherichia coli to superoxide stress by activating superoxide dismutases.
PLoS Pathog. 2020 Aug 26;16(8):e1008856. doi: 10.1371/journal.ppat.1008856. eCollection 2020 Aug.
7
Linking Comparative Genomics of Nine Potato-Associated Isolates With Their Differing Biocontrol Potential Against Late Blight.
Front Microbiol. 2020 Apr 30;11:857. doi: 10.3389/fmicb.2020.00857. eCollection 2020.
8
iTRAQ-Based Proteomic Analysis of Sublethally Injured O157:H7 Cells Induced by High Pressure Carbon Dioxide.
Front Microbiol. 2017 Dec 18;8:2544. doi: 10.3389/fmicb.2017.02544. eCollection 2017.
9
Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains.
J Biol Chem. 2018 Mar 30;293(13):4636-4643. doi: 10.1074/jbc.TM117.000182. Epub 2017 Dec 19.

本文引用的文献

1
Function of periplasmic copper-zinc superoxide dismutase in Caulobacter crescentus.
J Bacteriol. 1993 Feb;175(4):1198-202. doi: 10.1128/jb.175.4.1198-1202.1993.
5
The role of the sigma factor sigma S (KatF) in bacterial global regulation.
Annu Rev Microbiol. 1994;48:53-80. doi: 10.1146/annurev.mi.48.100194.000413.
6
Copper, zinc superoxide dismutase in Escherichia coli: periplasmic localization.
Arch Biochem Biophys. 1995 Jun 1;319(2):508-11. doi: 10.1006/abbi.1995.1324.
9
Superoxide and the production of oxidative DNA damage.
J Bacteriol. 1995 Dec;177(23):6782-90. doi: 10.1128/jb.177.23.6782-6790.1995.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验