Gustafson P
Department of Statistics, University of British Columbia, Canada.
Stat Methods Med Res. 1996 Dec;5(4):357-73. doi: 10.1177/096228029600500403.
All statistical analyses demand uncertain inputs or assumptions. This is especially true of Bayesian analyses. In addition to the usual concerns about the agreement of the data and model, a Bayesian must contemplate the effect of an uncertain prior specification. The degree to which inferences are robust to changes in the prior is of primary interest. This article discusses some robust techniques that have been suggested in the literature. One goal is to make apparent the relevance of some of these techniques to biostatistical work.
所有统计分析都需要不确定的输入或假设。贝叶斯分析尤其如此。除了通常对数据与模型一致性的关注外,贝叶斯分析者还必须考虑不确定的先验规范的影响。推理对先验变化的稳健程度是主要关注点。本文讨论了文献中提出的一些稳健技术。一个目标是阐明其中一些技术与生物统计学工作的相关性。