Anzali S, Barnickel G, Krug M, Sadowski J, Wagener M, Gasteiger J, Polanski J
Merck KGaA, Department of Medicinal Chemistry/Drug Design, Darmstadt, Germany.
J Comput Aided Mol Des. 1996 Dec;10(6):521-34. doi: 10.1007/BF00134176.
It is shown how a self-organizing neural network such as the one introduced by Kohonen can be used to analyze features of molecular surfaces, such as shape and the molecular electrostatic potential. On the one hand, two-dimensional maps of molecular surface properties can be generated and used for the comparison of a set of molecules. On the other hand, the surface geometry of one molecule can be stored in a network and this network can be used as a template for the analysis of the shape of various other molecules. The application of these techniques to a series of steroids exhibiting a range of binding activities to the corticosteroid-binding globulin receptor allows one to pinpoint the essential features necessary for biological activity.
展示了如何使用自组织神经网络(如Kohonen引入的那种)来分析分子表面的特征,如形状和分子静电势。一方面,可以生成分子表面性质的二维图,并用于一组分子的比较。另一方面,一个分子的表面几何形状可以存储在网络中,并且这个网络可以用作分析其他各种分子形状的模板。将这些技术应用于一系列对皮质类固醇结合球蛋白受体表现出一系列结合活性的类固醇,能够确定生物活性所需的基本特征。