Suppr超能文献

基于配体的相似性搜索中相关向量方法的比较。

Comparison of correlation vector methods for ligand-based similarity searching.

作者信息

Fechner Uli, Franke Lutz, Renner Steffen, Schneider Petra, Schneider Gisbert

机构信息

Johann Wolfgang Goethe-Universität, Institut für Organische Chemie und Chemische Biologie, Marie-Curie-Str. 11, D-60439 Frankfurt, Germany.

出版信息

J Comput Aided Mol Des. 2003 Oct;17(10):687-98. doi: 10.1023/b:jcam.0000017375.61558.ad.

Abstract

Correlation vector methods were tested for their usefulness in ligand-based virtual screening. Three molecular descriptors--two based on potential pharmacophore points and one on partial atom charges--and three similarity measures--the Manhattan distance, the Euclidian distance and the Tanimoto coefficient--were compared. The alignment-free descriptors seem to be particularly applicable when a course-grain filtering of data sets is required in combination with a high execution speed. Significant enrichment of actives was obtained by retrospective analysis. The cumulative percentages for all three descriptors allow for the retrieval of up to 78% of the active molecules in the first five percent of the reference database. Different descriptors retrieved only weakly overlapping sets of active molecules among the top-ranking compounds. If a single similarity index is to be used, the Manhattan distance seems to be particularly applicable. Generally, none of the three different descriptors tested in this study clearly outperformed the others. The suitability of a descriptor critically depends on the ligand-receptor interaction under investigation. For ligand-based similarity searching it is recommended to exploit several descriptors in parallel.

摘要

对相关向量方法在基于配体的虚拟筛选中的实用性进行了测试。比较了三种分子描述符——两种基于潜在药效团点,一种基于部分原子电荷——以及三种相似性度量——曼哈顿距离、欧几里得距离和塔尼莫托系数。当需要对数据集进行粗粒度过滤并结合高执行速度时,无对齐描述符似乎特别适用。通过回顾性分析获得了活性物质的显著富集。所有三种描述符的累积百分比使得在前5%的参考数据库中能够检索到高达78%的活性分子。不同的描述符在前排名化合物中仅检索到活性分子的弱重叠集。如果要使用单个相似性指数,曼哈顿距离似乎特别适用。一般来说,本研究中测试的三种不同描述符中没有一种明显优于其他描述符。描述符的适用性关键取决于所研究的配体-受体相互作用。对于基于配体的相似性搜索,建议并行利用多个描述符。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验