Thoden J B, Holden H M, Fisher A J, Sinclair J F, Wesenberg G, Baldwin T O, Rayment I
Institute for Enzyme Research, University of Wisconsin, Madison 53705, USA.
Protein Sci. 1997 Jan;6(1):13-23. doi: 10.1002/pro.5560060103.
Luciferase, as isolated from Vibrio harveyi, is an alpha beta heterodimer. When allowed to fold in the absence of the alpha subunit, either in vitro or in vivo, the beta subunit of enzyme will form a kinetically stable homodimer that does not unfold even after prolonged incubation in 5 M urea at pH 7.0 and 18 degrees C. This form of the beta subunit, arising via kinetic partitioning on the folding pathway, appears to constitute a kinetically trapped alternative to the heterodimeric enzyme (Sinclair JF, Ziegler MM, Baldwin TO. 1994. Kinetic partitioning during protein folding yields multiple native states. Nature Struct Biol 1: 320-326). Here we describe the X-ray crystal structure of the beta 2 homodimer of luciferase from V. harveyi determined and refined at 1.95 A resolution. Crystals employed in the investigational belonged to the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions of a = 58.8 A, b = 62.0 A, and c = 218.2 A and contained one dimer per asymmetric unit. Like that observed in the functional luciferase alpha beta heterodimer, the major tertiary structural motif of each beta subunit consists of an (alpha/beta)8 barrel (Fisher AJ, Raushel FM, Baldwin TO, Rayment I. 1995. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution. Biochemistry 34: 6581-6586). The root-mean-square deviation of the alpha-carbon coordinates between the beta subunits of the hetero- and homodimers is 0.7 A. This high resolution X-ray analysis demonstrated that "domain" or "loop" swapping has not occurred upon formation of the beta 2 homodimer and thus the stability of the beta 2 species to denaturation cannot be explained in such simple terms. In fact, the subunit:subunit interfaces observed in both the beta 2 homodimer and alpha beta heterodimer are remarkably similar in hydrogen-bonding patterns and buried surface areas.
从哈维弧菌中分离出的荧光素酶是一种αβ异源二聚体。当在没有α亚基的情况下,无论是在体外还是体内进行折叠时,该酶的β亚基会形成一种动力学稳定的同型二聚体,即使在pH 7.0和18℃条件下于5M尿素中长时间孵育后也不会解折叠。这种形式的β亚基是通过折叠途径上的动力学分配产生的,似乎构成了异源二聚体酶的一种动力学捕获的替代形式(Sinclair JF,Ziegler MM,Baldwin TO. 1994.蛋白质折叠过程中的动力学分配产生多种天然状态。《自然结构生物学》1:320 - 326)。在此,我们描述了哈维弧菌荧光素酶β2同型二聚体的X射线晶体结构,其分辨率为1.95 Å,已确定并经过精修。研究中使用的晶体属于正交空间群P2(1)2(1)2(1),晶胞尺寸为a = 58.8 Å,b = 62.0 Å,c = 218.2 Å,每个不对称单元包含一个二聚体。与在功能性荧光素酶αβ异源二聚体中观察到的情况一样,每个β亚基的主要三级结构基序由一个(α/β)8桶状结构组成(Fisher AJ,Raushel FM,Baldwin TO,Rayment I. 1995.哈维弧菌细菌荧光素酶在2.4 Å分辨率下的三维结构。《生物化学》34:6581 - 6586)。异源二聚体和同型二聚体的β亚基之间α - 碳原子坐标的均方根偏差为0.7 Å。这种高分辨率的X射线分析表明,在形成β2同型二聚体时并未发生“结构域”或“环”交换,因此不能用如此简单的术语来解释β2物种对变性的稳定性。实际上,在β2同型二聚体和αβ异源二聚体中观察到的亚基:亚基界面在氢键模式和埋藏表面积方面非常相似。