Suppr超能文献

荧光素酶亚基折叠与组装的动力学机制。

Kinetic mechanism of luciferase subunit folding and assembly.

作者信息

Clark A C, Raso S W, Sinclair J F, Ziegler M M, Chaffotte A F, Baldwin T O

机构信息

Center for Macromolecular Design, Institute of Biosciences and Technology, Texas A&M University, College Station 77843, USA.

出版信息

Biochemistry. 1997 Feb 18;36(7):1891-9. doi: 10.1021/bi962477m.

Abstract

The kinetic mechanism in vitro of the folding and assembly of the heterodimeric flavin monooxygenase bacterial luciferase has been defined by a unique set of rate constants which describe both the productive refolding pathway and competing off-pathway reactions in 50 mM phosphate, pH 7.0 at 18 degrees C. The individual alpha and beta subunits fold independently to form heterodimerization-competent species, alpha i and beta i. The alpha i beta i species can interact to form an inactive heterodimeric intermediate, [alpha beta ]i, which isomerizes to form the active alpha beta structure; the structure of the enzyme has been determined to 1.5 A resolution [Fisher, A. J., Thompson, T. B., Thoden, J. B., Baldwin, T. O., & Rayment, I. (1996) J. Biol. Chem. 271, 21956-21968]. In the absence of alpha i, beta i can form a kinetically trapped homodimer, beta 2, with a second-order rate constant of about 180 M-1 s-1 [Sinclair, J. F., Ziegler, M. M., & Baldwin, T. O. (1994) Nat. Struct. Biol. 1, 320-326]; the structure of beta 2 has recently been reported [Thoden. J. B., Holden, H. M., Fisher, A. J., Sinclair. J. F., Wesenberg, G., Baldwin, T.O., & Rayment, I. (1997) Protein Sci. 6, 13-23]. The beta i species, or some other form that precedes beta i on the refolding pathway, can also undergo a first-order conversion into a form (designated beta x) that cannot associate with alpha i to form the native enzyme. The rate constant for this process, assigned here, accounts well for the previously observed dependence of final yield on concentration of refolding species [Ziegler, M.M., Goldberg, M.E., Chaffotte, A. F., & Baldwin, T. O. (1993) J. Biol. Chem. 268, 10760-10765]. In simulations of the refolding reaction, all processes associated with the refolding of the individual subunits were combined into single first-order rate constants for each subunit which were consistent with the rate constants determined from stopped-flow circular dichroism studies. The first-order rate constant for the folding of the alpha subunit, estimated from the concentration-independent lag preceding the appearance of active enzyme, and the second-order rate constant for assembly of alpha i and beta i into the heterodimer, estimated from the concentration-dependent rate of appearance of active enzyme, were consistent with the rates of first- and second-order processes monitored by changes in fluorescence of an extrinsic probe [the product of modification with N-(4-anilino-1-naphthyl)maleimide] on the alpha subunit during refolding. The rate constant for the isomerization of [alpha beta]i to form the active heterodimer was estimated from the kinetic data of a secondary dilution experiment and from fluorescence measurements of protein diluted 20-fold from 2.1 M urea-containing buffer. The rate constants reported here for the kinetic mechanism of refolding permitted simulation of the time courses and yields for activity recovery during the refolding of luciferase from about 1 to 25 micrograms/mL which are in excellent agreement with our previously reported data.

摘要

异二聚体黄素单加氧酶细菌荧光素酶体外折叠和组装的动力学机制已由一组独特的速率常数确定,这些常数描述了在18℃、50 mM磷酸盐、pH 7.0条件下的有效重折叠途径和竞争性非途径反应。单个α和β亚基独立折叠形成具有异二聚化能力的物种αi和βi。αiβi物种可以相互作用形成无活性的异二聚体中间体[αβ]i,该中间体异构化形成活性αβ结构;该酶的结构已确定至1.5 Å分辨率[Fisher, A. J., Thompson, T. B., Thoden, J. B., Baldwin, T. O., & Rayment, I. (1996) J. Biol. Chem. 271, 21956 - 21968]。在没有αi的情况下,βi可以形成动力学上被捕获的同二聚体β2,二级速率常数约为180 M-1 s-1[Sinclair, J. F., Ziegler, M. M., & Baldwin, T. O. (1994) Nat. Struct. Biol. 1, 320 - 326];β2的结构最近已有报道[Thoden. J. B., Holden, H. M., Fisher, A. J., Sinclair. J. F., Wesenberg, G., Baldwin, T.O., & Rayment, I. (1997) Protein Sci. 6, 13 - 23]。βi物种或重折叠途径中先于βi的其他某种形式,也可以经历一级转化为一种形式(称为βx),该形式不能与αi结合形成天然酶。此处确定的该过程的速率常数很好地解释了先前观察到的最终产率对重折叠物种浓度的依赖性[Ziegler, M.M., Goldberg, M.E., Chaffotte, A. F., & Baldwin, T. O. (1993) J. Biol. Chem. 268, 10760 - 10765]。在重折叠反应的模拟中,与各个亚基重折叠相关的所有过程被合并为每个亚基的单个一级速率常数,这些常数与通过停流圆二色性研究确定的速率常数一致。从活性酶出现之前与浓度无关的延迟估计的α亚基折叠的一级速率常数,以及从活性酶出现的浓度依赖性速率估计的αi和βi组装成异二聚体的二级速率常数,与重折叠过程中通过α亚基上外部探针(N-(4-苯胺基-1-萘基)马来酰亚胺修饰的产物)荧光变化监测的一级和二级过程的速率一致。[αβ]i异构化形成活性异二聚体的速率常数是根据二次稀释实验的动力学数据以及从含2.1 M尿素缓冲液中20倍稀释的蛋白质的荧光测量估计的。此处报道的重折叠动力学机制的速率常数允许模拟荧光素酶从约1至25微克/毫升重折叠过程中活性恢复的时间进程和产率,这与我们先前报道的数据非常吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验