Enderle T, Ha T, Ogletree D F, Chemla D S, Magowan C, Weiss S
Molecular Design Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):520-5. doi: 10.1073/pnas.94.2.520.
Accurate localization of proteins within the substructure of cells and cellular organelles enables better understanding of structure-function relationships, including elucidation of protein-protein interactions. We describe the use of a near-field scanning optical microscope (NSOM) to simultaneously map and detect colocalized proteins within a cell, with superresolution. The system we elected to study was that of human red blood cells invaded by the human malaria parasite Plasmodium falciparum. During intraerythrocytic growth, the parasite expresses proteins that are transported to the erythrocyte cell membrane. Association of parasite proteins with host skeletal proteins leads to modification of the erythrocyte membrane. We report on colocalization studies of parasite proteins with an erythrocyte skeletal protein. Host and parasite proteins were selectively labeled in indirect immunofluorescence antibody assays. Simultaneous dual-color excitation and detection with NSOM provided fluorescence maps together with topography of the cell membrane with subwavelength (100 nm) resolution. Colocalization studies with laser scanning confocal microscopy provided lower resolution (310 nm) fluorescence maps of cross sections through the cell. Because the two excitation colors shared the exact same near-field aperture, the two fluorescence images were acquired in perfect, pixel-by-pixel registry, free from chromatic aberrations, which contaminate laser scanning confocal microscopy measurements. Colocalization studies of the protein pairs of mature parasite-infected erythrocyte surface antigen (MESA) (parasite)/protein4.1(host) and P. falciparum histidine rich protein (PfHRP1) (parasite)/protein4.1(host) showed good real-space correlation for the MESA/protein4.1 pair, but relatively poor correlation for the PfHRP1/protein4.1 pair. These data imply that NSOM provides high resolution information on in situ interactions between proteins in biological membranes. This method of detecting colocalization of proteins in cellular structures may have general applicability in many areas of current biological research.
蛋白质在细胞及细胞器亚结构中的准确定位有助于更好地理解结构-功能关系,包括阐明蛋白质-蛋白质相互作用。我们描述了使用近场扫描光学显微镜(NSOM)以超分辨率同时绘制和检测细胞内共定位蛋白质的方法。我们选择研究的系统是被人类疟原虫恶性疟原虫入侵的人类红细胞系统。在红细胞内生长期间,疟原虫表达被转运至红细胞细胞膜的蛋白质。疟原虫蛋白质与宿主骨架蛋白的结合导致红细胞膜的修饰。我们报告了疟原虫蛋白质与红细胞骨架蛋白的共定位研究。在间接免疫荧光抗体试验中对宿主和疟原虫蛋白质进行了选择性标记。NSOM的同时双色激发和检测提供了具有亚波长(100 nm)分辨率的细胞膜荧光图以及形貌。激光扫描共聚焦显微镜的共定位研究提供了细胞横截面的较低分辨率(310 nm)荧光图。由于两种激发颜色共享完全相同的近场孔径,因此两幅荧光图像以完美的逐像素配准方式采集,不存在污染激光扫描共聚焦显微镜测量的色差。成熟疟原虫感染红细胞表面抗原(MESA)(疟原虫)/蛋白4.1(宿主)和恶性疟原虫富含组氨酸蛋白(PfHRP1)(疟原虫)/蛋白4.1(宿主)这两对蛋白质的共定位研究表明,MESA/蛋白4.1对具有良好的实空间相关性,而PfHRP1/蛋白4.1对的相关性相对较差。这些数据表明,NSOM提供了关于生物膜中蛋白质原位相互作用的高分辨率信息。这种检测细胞结构中蛋白质共定位的方法可能在当前许多生物学研究领域具有普遍适用性。