Lynch T M, Lintilhac P M
Botany Department, University of Vermont, Burlington 05405-0086, USA.
Dev Biol. 1997 Jan 15;181(2):246-56. doi: 10.1006/dbio.1996.8462.
Cell division, which is critical to plant development and morphology, requires the orchestration of hundreds of intracellular processes. In the end, however, cells must make critical decisions, based on a discrete set of mechanical signals such as stress, strain, and shear, to divide in such a way that they will survive the mechanical loads generated by turgor pressure and cell enlargement within the growing tissues. Here we report on a method whereby tobacco protoplasts swirled into a 1.5% agarose entrapment medium will survive and divide. The application of a controlled mechanical load to agarose blocks containing protoplasts orients the primary division plane of the embedded cells. Photoelastic analysis of the agarose entrapment medium can identify the lines of principal stress within the agarose, confirming the hypothesis that cells divide either parallel or perpendicular to the principal stress tensors. The coincidence between the orientation of the new division wall and the orientation of the principal stress tensors suggests that the perception of mechanical stress is a characteristic of individual plant cells. The ability of a cell to determine a shear-free orientation for a new partition wall may be related to the applied load through the deformation of the matrix material. In an isotropic matrix a uniaxial load will produce a rotationally symmetric strain field, which will define a shear-free plane. Where high stress intensities combine with the loading geometry to produce multiaxial loads there will be no axis of rotational symmetry and hence no shear free plane. This suggests that two mechanisms may be orienting the division plane, one a mechanism that works in rotationally symmetrical fields, yielding divisions perpendicular to the compressive tensor, parallel to the long axis of the cell, and one in asymmetric fields, yielding divisions parallel to the short axis of the cell and the compressive tensor.
细胞分裂对于植物发育和形态建成至关重要,它需要协调数百个细胞内过程。然而,最终细胞必须基于一系列离散的机械信号(如应力、应变和剪切力)做出关键决策,以便以能够承受膨压和生长组织内细胞增大所产生的机械负荷的方式进行分裂。在此,我们报告一种方法,通过该方法,涡旋进入1.5%琼脂糖包埋培养基的烟草原生质体能够存活并分裂。对含有原生质体的琼脂糖块施加可控的机械负荷,可使包埋细胞的主分裂平面定向。对琼脂糖包埋培养基的光弹性分析能够识别琼脂糖内的主应力线,从而证实细胞沿平行或垂直于主应力张量的方向分裂这一假设。新分裂壁的方向与主应力张量的方向一致,这表明机械应力感知是单个植物细胞的一个特征。细胞为新的隔壁确定无剪切方向的能力可能与基质材料的变形所施加的负荷有关。在各向同性基质中,单轴负荷会产生旋转对称的应变场,该应变场将定义一个无剪切平面。在高应力强度与加载几何形状相结合产生多轴负荷的情况下,将不存在旋转对称轴,因此也不存在无剪切平面。这表明可能有两种机制使分裂平面定向,一种机制在旋转对称场中起作用,产生垂直于压缩张量、平行于细胞长轴的分裂,另一种机制在非对称场中起作用,产生平行于细胞短轴和压缩张量的分裂。