Carmona Bruno, L S Delgado Inês, Nolasco Sofia, Marques Rita, Gonçalves João, Soares Helena
Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.
Results Probl Cell Differ. 2025;75:141-162. doi: 10.1007/978-3-031-91459-1_5.
Microtubule (MT) acetylation has emerged as a critical regulator of cellular stress responses, integrating mechanical and oxidative stimuli to support cellular adaptability and survival. This post-translational modification (PTM) enhances MT flexibility and resilience, enabling cells to withstand mechanical challenges such as changes in extracellular matrix stiffness and applied forces. Through its impact on MT physical properties, acetylation minimizes cytoskeletal breakage, reducing the need for constant remodeling and supporting cellular integrity under mechanical stress. Furthermore, tubulin acetylation regulates intracellular trafficking by modulating interactions with molecular motors, allowing for efficient cargo transport and precise spatial organization without disrupting the MT network. In the context of oxidative stress, tubulin acetylation responds to redox imbalances by stabilizing MTs and influencing cellular pathways that regulate reactive oxygen species (ROS). This modification is linked to enhanced antioxidant responses, autophagy regulation, and mitochondrial dynamics, highlighting its role in maintaining cellular homeostasis under oxidative conditions. The dual function of tubulin acetylation, responding to and integrating signals from mechanical and oxidative stress, acts as a bridging mechanism between physical and chemical signaling pathways. Consequently, it has the potential to be a therapeutic target in diseases characterized by dysregulated stress responses, including neurodegenerative disorders, cancer, and cardiovascular conditions. Despite significant progress has been made, unanswered questions persist, particularly regarding the molecular mechanisms by which acetylated MTs encode spatial and functional information and their interplay with other tubulin PTMs.
微管(MT)乙酰化已成为细胞应激反应的关键调节因子,整合机械和氧化刺激以支持细胞适应性和存活。这种翻译后修饰(PTM)增强了微管的柔韧性和弹性,使细胞能够承受诸如细胞外基质硬度变化和外力等机械挑战。通过对微管物理性质的影响,乙酰化可最大限度地减少细胞骨架断裂,减少持续重塑的需求,并在机械应力下维持细胞完整性。此外,微管蛋白乙酰化通过调节与分子马达的相互作用来调节细胞内运输,从而实现高效的货物运输和精确的空间组织,而不会破坏微管网络。在氧化应激的背景下,微管蛋白乙酰化通过稳定微管并影响调节活性氧(ROS)的细胞途径来应对氧化还原失衡。这种修饰与增强的抗氧化反应、自噬调节和线粒体动力学有关,突出了其在氧化条件下维持细胞稳态中的作用。微管蛋白乙酰化的双重功能,即响应和整合来自机械和氧化应激的信号,充当了物理和化学信号通路之间的桥梁机制。因此,它有可能成为以应激反应失调为特征的疾病的治疗靶点,包括神经退行性疾病、癌症和心血管疾病。尽管已经取得了重大进展,但仍存在未解决的问题,特别是关于乙酰化微管编码空间和功能信息的分子机制以及它们与其他微管蛋白PTM的相互作用。
Results Probl Cell Differ. 2025
Results Probl Cell Differ. 2025
Arch Ital Urol Androl. 2025-6-30
J Health Organ Manag. 2025-6-30
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2017-7-26
Biochemistry. 2024-10-1
Front Cell Dev Biol. 2024-8-13
Mater Today Bio. 2024-4-12
Nat Commun. 2024-3-6
Annu Rev Cell Dev Biol. 2023-10-16
Curr Opin Cell Biol. 2023-10
Nat Mater. 2023-7
Nat Mater. 2022-11