Biggin P C, Breed J, Son H S, Sansom M S
Laboratory of Molecular Biophysics, University of Oxford, England.
Biophys J. 1997 Feb;72(2 Pt 1):627-36. doi: 10.1016/s0006-3495(97)78701-0.
Alamethicin is an alpha-helical peptide that forms voltage-activated ion channels. Experimental data suggest that channel formation occurs via voltage-dependent insertion of alamethicin helices into lipid bilayers, followed by self-assembly of inserted helices to form a parallel helix bundle. Changes in the kink angle of the alamethicin helix about its central proline residue have also been suggested to play a role in channel gating. Alamethicin helices generated by simulated annealing and restrained molecular dynamics adopt a kink angle similar to that in the x-ray crystal structure, even if such simulations start with an idealized unkinked helix. This suggests that the kinked helix represents a stable conformation of the molecule. Molecular dynamics simulations in the presence of a simple bilayer model and a transbilayer voltage difference are used to explore possible mechanisms of helix insertion. The bilayer is represented by a hydrophobicity potential. An alamethicin helix inserts spontaneously in the absence of a transbilayer voltage. Application of a cis positive voltage decreases the time to insertion. The helix kink angle fluctuates during the simulations. Insertion of the helix is associated with a decrease in the mean kink angle, thus helping the alamethicin molecule to span the bilayer. The simulation results are discussed in terms of models of alamethicin channel gating.
短杆菌肽A是一种能形成电压激活离子通道的α-螺旋肽。实验数据表明,通道形成是通过短杆菌肽A螺旋依赖电压插入脂质双层,随后插入的螺旋自组装形成平行螺旋束。短杆菌肽A螺旋围绕其中心脯氨酸残基的扭结角变化也被认为在通道门控中起作用。通过模拟退火和受限分子动力学生成的短杆菌肽A螺旋采用的扭结角与X射线晶体结构中的扭结角相似,即使这种模拟从理想化的无扭结螺旋开始。这表明扭结螺旋代表了该分子的稳定构象。在存在简单双层模型和跨双层电压差的情况下进行分子动力学模拟,以探索螺旋插入的可能机制。双层由疏水势表示。在没有跨双层电压的情况下,短杆菌肽A螺旋会自发插入。施加顺式正电压会减少插入时间。在模拟过程中,螺旋扭结角会波动。螺旋的插入与平均扭结角的减小有关,从而帮助短杆菌肽A分子跨越双层。根据短杆菌肽A通道门控模型对模拟结果进行了讨论。