Suppr超能文献

通过体素相似性度量的多分辨率优化实现磁共振和正电子发射断层扫描脑图像的自动三维配准。

Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures.

作者信息

Studholme C, Hill D L, Hawkes D J

机构信息

Division of Radiological Sciences, United Medical School of Guy's Hospital, London, United Kingdom.

出版信息

Med Phys. 1997 Jan;24(1):25-35. doi: 10.1118/1.598130.

Abstract

Approaches using measures of voxel intensity similarity are showing promise in fully automating magnetic resonance (MR) and positron emission tomography (PET) image registration in the head, without requiring extraction and identification of corresponding structures. In this paper a method of multiresolution optimization of these measures is described and five alternative measures are compared: cross correlation, minimization of corresponding PET intensity variation, moments of the distribution of values in the intensity feature space, entropy of the intensity feature space and mutual information. Their ability to recover registration is examined for ten clinically acquired image pairs with respect to the size of initial misregistration, the precision of the final result, and the accuracy assessed by visual inspection. The mutual information measure proved the most robust to initial starting estimate, successfully registering 98.8% of 900 trial misregistrations. Success is defined as providing a visually acceptable solution to a trained observer. A high resolution search (1/16 mm step size) of 30 trial misregistrations showed that optimization using the mutual information measure provided solutions with 0.13 mm, 0.11 mm and 0.17 mm standard deviations in the three Cartesian axes of the translation vector and 0.2 degree, 0.3 degree and 0.2 degree standard deviations for rotations about the three axes. The algorithm takes between 4 and 8 minutes to run on a typical workstation, including visual inspection of the result.

摘要

使用体素强度相似性度量的方法在实现头部磁共振(MR)和正电子发射断层扫描(PET)图像配准的完全自动化方面显示出了前景,无需提取和识别相应结构。本文描述了一种对这些度量进行多分辨率优化的方法,并比较了五种替代度量:互相关、使相应PET强度变化最小化、强度特征空间中值分布的矩、强度特征空间的熵以及互信息。针对十对临床采集的图像对,从初始配准错误的大小、最终结果的精度以及通过目视检查评估的准确性等方面,检验了它们恢复配准的能力。互信息度量被证明对初始估计最为稳健,在900次试验配准错误中成功配准了98.8%。成功的定义是为训练有素的观察者提供视觉上可接受的解决方案。对30次试验配准错误进行的高分辨率搜索(步长为1/16毫米)表明,使用互信息度量进行优化得到的解决方案在平移向量的三个笛卡尔坐标轴上的标准差分别为0.13毫米、0.11毫米和0.17毫米,绕三个轴旋转的标准差分别为0.2度、0.3度和0.2度。在典型的工作站上运行该算法(包括对结果进行目视检查)需要4到8分钟。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验