Suppr超能文献

GradICON:通过梯度逆一致性实现近似微分同胚

GradICON: Approximate Diffeomorphisms via Gradient Inverse Consistency.

作者信息

Tian Lin, Greer Hastings, Vialard François-Xavier, Kwitt Roland, Estépar Raúl San José, Rushmore Richard Jarrett, Makris Nikolaos, Bouix Sylvain, Niethammer Marc

机构信息

UNC Chapel Hill.

LIGM, Université Gustave Eiffel.

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2023 Jun;2023:18084-18094. doi: 10.1109/cvpr52729.2023.01734. Epub 2023 Aug 22.

Abstract

We present an approach to learning regular spatial transformations between image pairs in the context of medical image registration. Contrary to optimization-based registration techniques and many modern learning-based methods, we do not directly penalize transformation irregularities but instead promote transformation regularity via an inverse consistency penalty. We use a neural network to predict a map between a source and a target image as well as the map when swapping the source and target images. Different from existing approaches, we compose these two resulting maps and regularize deviations of the Jacobian of this composition from the identity matrix. This regularizer - GradICON - results in much better convergence when training registration models compared to promoting inverse consistency of the composition of maps directly while retaining the desirable implicit regularization effects of the latter. We achieve state-of-the-art registration performance on a variety of real-world medical image datasets using a single set of hyperparameters and a single non-dataset-specific training protocol. Code is available at https://github.com/uncbiag/ICON.

摘要

我们提出了一种在医学图像配准背景下学习图像对之间规则空间变换的方法。与基于优化的配准技术和许多现代基于学习的方法不同,我们不直接惩罚变换的不规则性,而是通过逆一致性惩罚来促进变换的规则性。我们使用神经网络来预测源图像和目标图像之间的映射以及交换源图像和目标图像时的映射。与现有方法不同,我们将这两个生成的映射组合起来,并对该组合的雅可比矩阵与单位矩阵的偏差进行正则化。这种正则化器——GradICON——在训练配准模型时,与直接促进映射组合的逆一致性相比,收敛性要好得多,同时保留了后者所需的隐式正则化效果。我们使用一组超参数和单一的非数据集特定训练协议,在各种真实世界的医学图像数据集上实现了领先的配准性能。代码可在https://github.com/uncbiag/ICON获取。

相似文献

1
GradICON: Approximate Diffeomorphisms via Gradient Inverse Consistency.GradICON:通过梯度逆一致性实现近似微分同胚
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2023 Jun;2023:18084-18094. doi: 10.1109/cvpr52729.2023.01734. Epub 2023 Aug 22.
2
ICON: Learning Regular Maps Through Inverse Consistency.ICON:通过反向一致性学习正则映射。
Proc IEEE Int Conf Comput Vis. 2021 Oct;2021:3376-3385. doi: 10.1109/iccv48922.2021.00338.
3
Metric Learning for Image Registration.用于图像配准的度量学习
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:8455-8464. doi: 10.1109/cvpr.2019.00866. Epub 2020 Jan 9.
5
Inverse consistent non-rigid image registration based on robust point set matching.基于鲁棒点集匹配的反向一致非刚性图像配准
Biomed Eng Online. 2014;13 Suppl 2(Suppl 2):S2. doi: 10.1186/1475-925X-13-S2-S2. Epub 2014 Dec 11.
6
Anatomical Data Augmentation via Fluid-based Image Registration.通过基于流体的图像配准进行解剖数据增强
Med Image Comput Comput Assist Interv. 2020 Oct;12263:318-328. doi: 10.1007/978-3-030-59716-0_31. Epub 2020 Sep 29.
8
Diffeomorphic image registration with bijective consistency.具有双射一致性的微分同胚图像配准
Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3006871. Epub 2024 Apr 2.
10
Medical image registration via neural fields.基于神经场的医学图像配准。
Med Image Anal. 2024 Oct;97:103249. doi: 10.1016/j.media.2024.103249. Epub 2024 Jun 27.

本文引用的文献

3
ICON: Learning Regular Maps Through Inverse Consistency.ICON:通过反向一致性学习正则映射。
Proc IEEE Int Conf Comput Vis. 2021 Oct;2021:3376-3385. doi: 10.1109/iccv48922.2021.00338.
4
SynthMorph: Learning Contrast-Invariant Registration Without Acquired Images.SynthMorph:无需获取图像即可学习对比不变配准。
IEEE Trans Med Imaging. 2022 Mar;41(3):543-558. doi: 10.1109/TMI.2021.3116879. Epub 2022 Mar 2.
5
CNN-based lung CT registration with multiple anatomical constraints.基于卷积神经网络的多解剖约束肺部 CT 配准。
Med Image Anal. 2021 Aug;72:102139. doi: 10.1016/j.media.2021.102139. Epub 2021 Jun 22.
8
Networks for Joint Affine and Non-parametric Image Registration.联合仿射和非参数图像配准网络
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:4219-4228. doi: 10.1109/cvpr.2019.00435. Epub 2020 Jan 9.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验