Tian Lin, Greer Hastings, Vialard François-Xavier, Kwitt Roland, Estépar Raúl San José, Rushmore Richard Jarrett, Makris Nikolaos, Bouix Sylvain, Niethammer Marc
UNC Chapel Hill.
LIGM, Université Gustave Eiffel.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2023 Jun;2023:18084-18094. doi: 10.1109/cvpr52729.2023.01734. Epub 2023 Aug 22.
We present an approach to learning regular spatial transformations between image pairs in the context of medical image registration. Contrary to optimization-based registration techniques and many modern learning-based methods, we do not directly penalize transformation irregularities but instead promote transformation regularity via an inverse consistency penalty. We use a neural network to predict a map between a source and a target image as well as the map when swapping the source and target images. Different from existing approaches, we compose these two resulting maps and regularize deviations of the Jacobian of this composition from the identity matrix. This regularizer - GradICON - results in much better convergence when training registration models compared to promoting inverse consistency of the composition of maps directly while retaining the desirable implicit regularization effects of the latter. We achieve state-of-the-art registration performance on a variety of real-world medical image datasets using a single set of hyperparameters and a single non-dataset-specific training protocol. Code is available at https://github.com/uncbiag/ICON.
我们提出了一种在医学图像配准背景下学习图像对之间规则空间变换的方法。与基于优化的配准技术和许多现代基于学习的方法不同,我们不直接惩罚变换的不规则性,而是通过逆一致性惩罚来促进变换的规则性。我们使用神经网络来预测源图像和目标图像之间的映射以及交换源图像和目标图像时的映射。与现有方法不同,我们将这两个生成的映射组合起来,并对该组合的雅可比矩阵与单位矩阵的偏差进行正则化。这种正则化器——GradICON——在训练配准模型时,与直接促进映射组合的逆一致性相比,收敛性要好得多,同时保留了后者所需的隐式正则化效果。我们使用一组超参数和单一的非数据集特定训练协议,在各种真实世界的医学图像数据集上实现了领先的配准性能。代码可在https://github.com/uncbiag/ICON获取。