Marshall H D, Baker A J
Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, Canada.
Mol Biol Evol. 1997 Feb;14(2):173-84. doi: 10.1093/oxfordjournals.molbev.a025750.
We sequenced the entire control region and portions of flanking genes (tRNA(Phe), tRNA(Glu), and ND6) in the common chaffinch (Fringilla coelebs), blue chaffinch (F. teydea), brambling (F. montifringilla), and greenfinch (Carduelis chloris). In these finches the control region is similar in length (1,223-1,237 bp) and has the same flanking gene order as in other birds, and contains a putative TAS element and the highly conserved CSB-1 and F, D, and C boxes recognizable in most vertebrates. Cloverleaf-like structures associated with the TAS element at the 5' end and CSB-1 at the 3' end of the control region may be involved with the stop and start of D-loop synthesis, respectively. The pattern of nucleotide and substitution bias is similar to that in other vertebrates, and consequently the finch control region can be subdivided into a central, conserved G-rich domain (domain II) flanked by hypervariable 5'-C-rich (domain I) and 3'-AT-rich (domain III) segments. In pairwise comparisons among finch species, the central domain has unusually low transition/transversion ratios, which suggests that increased G + T content is a functional constraint, possibly for DNA primase efficiency. In finches the relative rates of evolution vary among domains according to a ratio of 4.2 (domain III) to 2.2 (domain I) to 1 (domain II), and extensively among sites within domains I and II. Domain I and III sequences are extremely useful in recovering intraspecific phylogeographic splits between populations in Africa and Europe, Madeira, and a basal lineage in Nefza, Tunisia. Domain II sequences are highly conserved, and are therefore only useful in conjunction with sequences from domains I and III in phylogenetic studies of closely related species.
我们对普通朱雀(Fringilla coelebs)、蓝朱雀(F. teydea)、燕雀(F. montifringilla)和绿翅金雀(Carduelis chloris)的整个控制区以及侧翼基因(tRNA(Phe)、tRNA(Glu)和ND6)的部分区域进行了测序。在这些雀类中,控制区长度相似(1223 - 1237 bp),侧翼基因顺序与其他鸟类相同,包含一个假定的TAS元件以及在大多数脊椎动物中都可识别的高度保守的CSB - 1和F、D、C框。与控制区5'端的TAS元件和3'端的CSB - 1相关的三叶草状结构可能分别参与D - 环合成的终止和起始。核苷酸和替代偏向模式与其他脊椎动物相似,因此雀类控制区可细分为一个中央保守的富含G的结构域(结构域II),两侧是高变的5'端富含C的结构域(结构域I)和3'端富含AT的结构域(结构域III)。在雀类物种的两两比较中,中央结构域的转换/颠换比异常低,这表明G + T含量增加是一种功能限制,可能与DNA引物酶效率有关。在雀类中,不同结构域的进化相对速率根据4.2(结构域III):2.2(结构域I):1(结构域II)的比例变化,并且在结构域I和II内的位点之间差异很大。结构域I和III的序列对于恢复非洲和欧洲、马德拉群岛种群之间以及突尼斯内夫扎的一个基部谱系的种内系统地理分歧非常有用。结构域II的序列高度保守,因此仅在密切相关物种的系统发育研究中与结构域I和III的序列结合使用时才有用。