Suppr超能文献

大分子拥挤对伴侣蛋白介导的蛋白质折叠的影响。

The effect of macromolecular crowding on chaperonin-mediated protein folding.

作者信息

Martin J, Hartl F U

机构信息

Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.

出版信息

Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1107-12. doi: 10.1073/pnas.94.4.1107.

Abstract

The cylindrical chaperonin GroEL and its cofactor GroES mediate ATP-dependent protein folding in Escherichia coli. Recent studies in vitro demonstrated that GroES binding to GroEL causes the displacement of unfolded polypeptide into the central volume of the GroEL cavity for folding in a sequestrated environment. Resulting native protein leaves GroEL upon GroES release, whereas incompletely folded polypeptide can be recaptured for structural rearrangement followed by another folding trial. Additionally, each cycle of GroES binding and dissociation is associated with the release of nonnative polypeptide into the bulk solution. Here we show that this loss of substrate from GroEL is prevented when the folding reaction is carried out in the presence of macromolecular crowding agents, such as Ficoll and dextran, or in a dense cytosolic solution. Thus, the release of nonnative polypeptide is not an essential feature of the productive chaperonin mechanism. Our results argue that conditions of excluded volume, thought to prevail in the bacterial cytosol, increase the capacity of the chaperonin to retain nonnative polypeptide throughout successive reaction cycles. We propose that the leakiness of the chaperonin system under physiological conditions is adjusted such that E. coli proteins are likely to complete folding without partitioning between different GroEL complexes. Polypeptides that are unable to fold on GroEL eventually will be transferred to other chaperones or the degradation machinery.

摘要

圆柱形伴侣蛋白GroEL及其辅因子GroES介导大肠杆菌中依赖ATP的蛋白质折叠。最近的体外研究表明,GroES与GroEL结合会导致未折叠的多肽移位到GroEL腔的中心区域,以便在隔离环境中进行折叠。折叠产生的天然蛋白质在GroES释放时离开GroEL,而未完全折叠的多肽可以被重新捕获以进行结构重排,随后进行另一次折叠尝试。此外,GroES结合和解离的每个循环都伴随着非天然多肽释放到大量溶液中。在这里我们表明,当在大分子拥挤剂(如聚蔗糖和葡聚糖)存在下或在致密的胞质溶液中进行折叠反应时,GroEL底物的这种损失可以得到防止。因此,非天然多肽的释放不是有活性的伴侣蛋白机制的必要特征。我们的结果表明,被认为在细菌胞质溶胶中普遍存在的排除体积条件,增加了伴侣蛋白在连续反应循环中保留非天然多肽的能力。我们提出,伴侣蛋白系统在生理条件下的渗漏性经过调整,使得大肠杆菌蛋白质可能在不分配到不同GroEL复合物之间的情况下完成折叠。无法在GroEL上折叠的多肽最终将被转移到其他伴侣蛋白或降解机制中。

相似文献

1
The effect of macromolecular crowding on chaperonin-mediated protein folding.
Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1107-12. doi: 10.1073/pnas.94.4.1107.
2
Productive folding of a tethered protein in the chaperonin GroEL-GroES cage.
Biochem Biophys Res Commun. 2015 Oct 9;466(1):72-5. doi: 10.1016/j.bbrc.2015.08.108. Epub 2015 Aug 29.
5
Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation.
J Biol Chem. 2004 Jan 9;279(2):1090-9. doi: 10.1074/jbc.M310914200. Epub 2003 Oct 23.
6
Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.
Cell. 1996 Feb 9;84(3):481-90. doi: 10.1016/s0092-8674(00)81293-3.
7
Protein folding assisted by the GroEL/GroES chaperonin system.
Biochemistry (Mosc). 1998 Apr;63(4):374-81.
9
Mechanisms for GroEL/GroES-mediated folding of a large 86-kDa fusion polypeptide in vitro.
J Biol Chem. 1999 Apr 9;274(15):10405-12. doi: 10.1074/jbc.274.15.10405.

引用本文的文献

1
Macromolecule-Driven Supramolecular Polymerization Induced by Crowding Effects.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202512216. doi: 10.1002/anie.202512216. Epub 2025 Jul 16.
2
Bioinspired crowding directs supramolecular polymerisation.
Nat Commun. 2023 Feb 25;14(1):1084. doi: 10.1038/s41467-023-36540-x.
3
Osmolytes and crowders regulate aggregation of the cancer-related L106R mutant of the Axin protein.
Biophys J. 2021 Aug 17;120(16):3455-3469. doi: 10.1016/j.bpj.2021.05.024. Epub 2021 Jun 2.
4
Quantitative proteomic analysis to capture the role of heat-accumulated proteins in moss plant acquired thermotolerance.
Plant Cell Environ. 2021 Jul;44(7):2117-2133. doi: 10.1111/pce.13975. Epub 2020 Dec 21.
5
Melting Down Protein Stability: PAPS Synthase 2 in Patients and in a Cellular Environment.
Front Mol Biosci. 2019 May 3;6:31. doi: 10.3389/fmolb.2019.00031. eCollection 2019.
6
Predicting Molecular Crowding Effects in Ion-RNA Interactions.
J Phys Chem B. 2016 Sep 1;120(34):8837-44. doi: 10.1021/acs.jpcb.6b05625. Epub 2016 Aug 12.
7
Interaction Analysis of a Two-Component System Using Nanodiscs.
PLoS One. 2016 Feb 16;11(2):e0149187. doi: 10.1371/journal.pone.0149187. eCollection 2016.
10
Excluded-volume effects in living cells.
Angew Chem Int Ed Engl. 2015 Feb 16;54(8):2548-51. doi: 10.1002/anie.201409847. Epub 2014 Dec 29.

本文引用的文献

2
Release of both native and non-native proteins from a cis-only GroEL ternary complex.
Nature. 1996 Sep 5;383(6595):96-9. doi: 10.1038/383096a0.
3
Molecular chaperones in protein folding and translocation.
Curr Opin Struct Biol. 1996 Feb;6(1):43-50. doi: 10.1016/s0959-440x(96)80093-5.
4
Molecular chaperones in cellular protein folding.
Nature. 1996 Jun 13;381(6583):571-9. doi: 10.1038/381571a0.
5
Toward a mechanism for GroEL.GroES chaperone activity: an ATPase-gated and -pulsed folding and annealing cage.
Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4509-12. doi: 10.1073/pnas.93.9.4509.
6
Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.
Cell. 1996 Feb 9;84(3):481-90. doi: 10.1016/s0092-8674(00)81293-3.
7
Protein folding in the cell: competing models of chaperonin function.
FASEB J. 1996 Jan;10(1):20-6. doi: 10.1096/fasebj.10.1.8566542.
8
Protein folding in the central cavity of the GroEL-GroES chaperonin complex.
Nature. 1996 Feb 1;379(6564):420-6. doi: 10.1038/379420a0.
9
Structure of the heat shock protein chaperonin-10 of Mycobacterium leprae.
Science. 1996 Jan 12;271(5246):203-7. doi: 10.1126/science.271.5246.203.
10
The crystal structure of the GroES co-chaperonin at 2.8 A resolution.
Nature. 1996 Jan 4;379(6560):37-45. doi: 10.1038/379037a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验