Ivanova-Nikolova T T, Breitwieser G E
Johns Hopkins University School of Medicine, Department of Physiology, Baltimore, Maryland 21205, USA.
J Gen Physiol. 1997 Feb;109(2):245-53. doi: 10.1085/jgp.109.2.245.
Receptor-mediated activation of heterotrimeric G proteins leading to dissociation of the G alpha subunit from G beta gamma is a highly conserved signaling strategy used by numerous extracellular stimuli. Although G beta gamma subunits regulate a variety of effectors, including kinases, cyclases, phospholipases, and ion channels (Clapham, D.E., and E.J. Neer. 1993. Nature (Lond.). 365:403-406), few tools exist for probing instantaneous G beta gamma-effector interactions and little is known about the kinetic contributions of effectors to the signaling process. In this study, we used the atrial muscarinic K + channel, which is activated by direct interactions with G beta gamma subunits (Logothetis, D.E., Y. Kurachi J. Galper, E.J. Neer, and D.E. Clap. 1987. Nature (Lond.). 325:321-326; Wickman, K., J. A. Iniguez-Liuhi, P.A. Davenport, R. Taussig, G.B. Krapivinsky, M.E. Linder, A.G. Gilman, and D.E. Clapham. 1994. Nature (Lond.). 366: 654-663; Huang, C.-L., P.A. Slesinger, P.J. Casey, Y.N. Jan, and L.Y. Jan. 1995. Neuron. 15:1133-1143), as a sensitive reporter of the dynamics of G beta gamma-effector interactions. Muscarinic K+ channels exhibit bursting behavior upon G protein activation, shifting between three distinct functional modes, characterized by the frequency of channel openings during individual bursts. Acetylcholine concentration (and by inference, the concentration of activated G beta gamma) controls the fraction of time spent in each mode without changing either the burst duration or channel gating within individual modes. The picture which emerges is of a G beta gamma effector with allosteric regulation and an intrinsic "off" switch which serves to limit its own activation. These two features combine to establish exquisite channel sensitivity to changes in G beta gamma concentration, and may be indicative of the factors regulating other G beta gamma-modulated effectors.
受体介导的异源三聚体G蛋白激活导致Gα亚基与Gβγ解离,这是众多细胞外刺激所采用的一种高度保守的信号传导策略。尽管Gβγ亚基调节多种效应器,包括激酶、环化酶、磷脂酶和离子通道(克拉彭,D.E.,和E.J.尼尔。1993年。《自然》(伦敦)。365:403 - 406),但用于探究瞬时Gβγ - 效应器相互作用的工具很少,而且对于效应器在信号传导过程中的动力学贡献知之甚少。在本研究中,我们使用心房毒蕈碱K⁺通道,它通过与Gβγ亚基直接相互作用而被激活(洛戈塞蒂斯,D.E.,Y.仓知、J.加尔珀、E.J.尼尔和D.E.克拉普。1987年。《自然》(伦敦)。325:321 - 326;维克曼,K.,J.A.伊尼格斯 - 柳希、P.A.达文波特、R.陶西格、G.B.克拉皮温斯基、M.E.林德、A.G.吉尔曼和D.E.克拉彭。1994年。《自然》(伦敦)。366:654 - 663;黄,C.-L.,P.A.斯莱辛格、P.J.凯西、Y.N.扬和L.Y.扬。1995年。《神经元》。15:1133 - 1143),作为Gβγ - 效应器相互作用动力学的敏感报告分子。毒蕈碱K⁺通道在G蛋白激活时表现出爆发行为,在三种不同的功能模式之间转换,其特征是单个爆发期间通道开放的频率。乙酰胆碱浓度(由此推断,激活的Gβγ的浓度)控制在每种模式下花费的时间比例,而不改变单个模式内的爆发持续时间或通道门控。呈现出的情况是一个具有变构调节和内在“关闭”开关的Gβγ效应器,该开关用于限制其自身的激活。这两个特征共同作用,使通道对Gβγ浓度的变化具有极高的敏感性,并且可能指示调节其他Gβγ调节的效应器的因素。