University Center for Biomedical Research, Universidad de Colima, Colima, México.
J Physiol. 2011 Apr 1;589(Pt 7):1755-67. doi: 10.1113/jphysiol.2010.204115. Epub 2011 Jan 31.
Normal heart rate variability is critically dependent upon the G-protein-coupled, acetylcholine (ACh)-activated inward rectifier K+ current, I(KACh). A unique feature of I(KACh) is the so-called ‘relaxation' gating property that contributes to increased current at hyperpolarized membrane potentials. I(KACh) relaxation refers to a slow decrease or increase in current magnitude with depolarization or hyperpolarization, respectively. The molecular mechanism underlying this perplexing gating behaviour remains unclear. Here, we consider a novel explanation for I(KACh) relaxation based upon the recent finding that G-protein-coupled receptors (GPCRs) are intrinsically voltage sensitive and that the muscarinic agonists acetylcholine (ACh) and pilocarpine (Pilo) manifest opposite voltage-dependent I(KACh) modulation. We show that Pilo activation of I(KACh) displays relaxation characteristics opposite to that of ACh. We explain the opposite effects of ACh and Pilo using Markov models of I(KACh) that incorporate ligand-specific, voltage-dependent parameters. Based on experimental and computational findings, we propose a novel molecular mechanism to describe the enigmatic relaxation gating process: I(KACh) relaxation represents a voltage-dependent change in agonist affinity as a consequence of a voltage-dependent conformational change in the muscarinic receptor.
正常的心率变异性取决于 G 蛋白偶联、乙酰胆碱(ACh)激活的内向整流钾电流 I(KACh)。I(KACh)的一个独特特征是所谓的“弛豫”门控特性,它有助于增加超极化膜电位下的电流。I(KACh)弛豫是指随着去极化或超极化,电流幅度分别缓慢减小或增大。这种令人费解的门控行为的分子机制尚不清楚。在这里,我们根据最近的发现提出了一种新的 I(KACh)弛豫解释,即 G 蛋白偶联受体(GPCR)本质上是电压敏感的,并且毒蕈碱激动剂乙酰胆碱(ACh)和毛果芸香碱(Pilo)表现出相反的电压依赖性 I(KACh)调制。我们表明,Pilo 激活 I(KACh)表现出与 ACh 相反的弛豫特征。我们使用包含配体特异性、电压依赖性参数的 I(KACh)的 Markov 模型来解释 ACh 和 Pilo 的相反作用。基于实验和计算结果,我们提出了一种新的分子机制来描述神秘的弛豫门控过程:I(KACh)弛豫代表了由于毒蕈碱受体的电压依赖性构象变化,激动剂亲和力的电压依赖性变化。