Frillingos S, Ujwal M L, Sun J, Kaback H R
Howard Hughes Medical Institute, University of California Los Angeles 90095-1662, USA.
Protein Sci. 1997 Feb;6(2):431-7. doi: 10.1002/pro.5560060220.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in transmembrane domain VIII and flanking hydrophilic loops (from Gln 256 to Lys 289) was replaced individually with Cys. Of the 34 single-Cys mutants, 26 accumulate lactose to > 70% of the steady state observed with C-less permease, and an additional 7 mutants (Gly 262-->Cys, Gly 268-->Cys, Asn 272-->Cys, Pro 280-->Cys, Asn 284-->Cys, Gly 287-->Cys, and Gly 288-->Cys) exhibit lower but significant levels of accumulation (30-50% of C-less). As expected (Ujwal ML, Sahin-Tóth M, Persson B, Kaback HR, 1994, Mol Membr Biol 1:9-16), Cys replacement for Glu 269 abolishes lactose transport. Immunoblot analysis reveals that the mutants are inserted into the membrane at concentrations comparable to C-less permease, with the exceptions of mutants Pro 280-->Cys, Gly 287-->Cys, and Lys 289-->Cys, which are expressed at reduced levels. The transport activity of the mutants is inhibited by N-ethylmaleimide (NEM) in a highly specific manner. Most of the mutants are insensitive, but Cys replacements render the permease sensitive to inactivation by NEM at positions that cluster in manner indicating that they are on one face of an alpha-helix (Gly 262-->Cys, Val 264-->Cys, Thr 265-->Cys, Gly 268-->Cys. Asn 272-->Cys, Ala 273-->Cys, Met 276-->Cys, Phe 277-->Cys, and Ala 279-->Cys). The results indicate that transmembrane domain VIII is in alpha-helical conformation and demonstrate that, although only a single residue in this region of the permease is essential for activity (Glu 269), one face of the helix plays an important role in the transport mechanism. More direct evidence for the latter conclusion is provided in the companion paper (Frillingos S. Kaback HR, 1997, Protein Sci 6:438-443) by using site-directed sulfhydryl modification of the Cys-replacement mutants in situ.
利用一个缺乏半胱氨酸残基的功能性乳糖通透酶突变体(无半胱氨酸通透酶),跨膜结构域VIII及侧翼亲水环(从Gln 256至Lys 289)中的每个氨基酸残基都被逐个替换为半胱氨酸。在34个单半胱氨酸突变体中,26个积累乳糖的量达到无半胱氨酸通透酶所观察到的稳态水平的70%以上,另外7个突变体(Gly 262→Cys、Gly 268→Cys、Asn 272→Cys、Pro 280→Cys、Asn 284→Cys、Gly 287→Cys和Gly 288→Cys)积累水平较低但仍显著(为无半胱氨酸通透酶的30 - 50%)。正如预期的那样(Ujwal ML,Sahin - Tóth M,Persson B,Kaback HR,1994,Mol Membr Biol 1:9 - 16),用半胱氨酸替换Glu 269会消除乳糖转运。免疫印迹分析表明,除了Pro 280→Cys、Gly 287→Cys和Lys 289→Cys这几个表达水平降低的突变体外,其他突变体插入膜中的浓度与无半胱氨酸通透酶相当。突变体的转运活性受到N - 乙基马来酰亚胺(NEM)的高度特异性抑制。大多数突变体不敏感,但半胱氨酸替换使通透酶在聚集的位置对NEM失活敏感,这表明它们位于α - 螺旋的一侧(Gly 262→Cys、Val 264→Cys、Thr 265→Cys、Gly 268→Cys、Asn 272→Cys、Ala 273→Cys、Met 276→Cys、Phe 277→Cys和Ala 279→Cys)。结果表明跨膜结构域VIII呈α - 螺旋构象,并证明尽管通透酶该区域中只有一个残基对活性至关重要(Glu 269),但螺旋的一侧在转运机制中起重要作用。在配套论文(Frillingos S. Kaback HR,1997,Protein Sci 6:438 - 443)中,通过对原位半胱氨酸替换突变体进行定点巯基修饰,为后一结论提供了更直接的证据。