Stein J, Mohan R, Wang X H, Bortfeld T, Wu Q, Preiser K, Ling C C, Schlegel W
Deutsches Krebsforschungszentrum Heidelberg, Abteilung Medizinische Physik, Germany.
Med Phys. 1997 Feb;24(2):149-60. doi: 10.1118/1.597923.
The fundamental question of how many equispaced coplanar intensity-modulated photon beams are required to obtain an optimum treatment plan is investigated in a dose escalation study for a typical prostate tumor. Furthermore, optimization of beam orientations to improve dose distributions is explored. A dose-based objective function and a fast gradient technique are employed for optimizing the intensity profiles (inverse planning). An exhaustive search and fast simulated annealing techniques (FSA) are used to optimize beam orientations. However, to keep computation times reasonable, the intensity profiles for each beam arrangement are still optimized using inverse planning. A pencil beam convolution algorithm is employed for dose calculation. All calculations are performed in three-dimensional (3D) geometry for 15 MV photons. DVHs, dose displays, TCP, NTCP, and biological score functions are used for evaluation of treatment plans. It is shown that for the prostate case presented here, the minimum required number of equiangular beams depends on the prescription dose level and ranges from three beams for 70 Gy plans to seven to nine beams for 81 Gy plans. For the highest dose level (81 Gy), beam orientations are optimized and compared to equiangular spaced arrangements. It is shown that (1) optimizing beam orientations is most valuable for a small numbers of beams (< or = 5) and the gain diminishes rapidly for higher numbers of beams; (2) if sensitive structures (for example rectum) are partially enclosed by the target volume, beams coming from their direction tend to be preferable, since they allow greater control over dose distributions; (3) while FSA and an exhaustive search lead to the same results, computation times using FSA are reduced by two orders of magnitude to clinically acceptable values. Moreover, characteristics of and demands on biology-based and dose-based objective functions for optimization of intensity-modulated treatments are discussed.
在一项针对典型前列腺肿瘤的剂量递增研究中,探讨了获得最佳治疗方案所需的等间距共面调强光子束数量这一基本问题。此外,还研究了优化射束方向以改善剂量分布的问题。采用基于剂量的目标函数和快速梯度技术来优化强度分布(逆向计划)。使用穷举搜索和快速模拟退火技术(FSA)来优化射束方向。然而,为了使计算时间合理,每种射束排列的强度分布仍使用逆向计划进行优化。剂量计算采用笔形束卷积算法。所有计算均在三维(3D)几何结构中针对15 MV光子进行。剂量体积直方图(DVH)、剂量显示、肿瘤控制概率(TCP)、正常组织并发症概率(NTCP)和生物评分函数用于评估治疗方案。结果表明,对于此处呈现的前列腺病例,所需的最小等角射束数量取决于处方剂量水平,范围从70 Gy计划的三根射束到81 Gy计划的七至九根射束。对于最高剂量水平(81 Gy),优化射束方向并与等角间隔排列进行比较。结果表明:(1)优化射束方向对于少量射束(≤5根)最有价值,而对于更多数量的射束,增益迅速减小;(2)如果敏感结构(例如直肠)部分被靶体积包围,来自其方向的射束往往更可取,因为它们能更好地控制剂量分布;(3)虽然FSA和穷举搜索得出相同结果,但使用FSA的计算时间减少了两个数量级,达到临床可接受的值。此外,还讨论了基于生物学和基于剂量的目标函数在调强治疗优化方面的特点和要求。