Baltzan M A, Shoker A S, Baltzan R B
Royal University Hospital, Saskatoon, SK, Canada.
Clin Nephrol. 1997 Feb;47(2):112-6.
To define the longitudinal relationship of declining renal function to protein consumption and turnover in the failing renal allograft model of chronic renal failure.
The study group is our first eight consecutive cadaveric renal graft recipients who after attaining a normal creatinine clearance, then developed chronic renal failure. We analysed their urea and creatinine clearances (Cur, Ccr), serum urea (SU), urinary urea and creatinine (Ur, Ucr), serum albumin (SA), urinary protein (Upr), body weight (BW), and steroid dose. Steady state Uur is also dietary protein intake (DPI) and protein catabolic rate (PCR). Ucr measures body protein mass. Ucr/Uur measures the ratio of body protein mass to urea excretion. Mean follow-up 4.7 years, range 1.5-8.7 years.
Mean changes: (1) Body weight (BW) rose from 56 to 65 and then fell to 61 kgms. (2) Cur fell 65 to 5 and Ccr 92 to 12 ml/min/70 kg. (3) Uur fell from 369 to 107 and Ucr from 16.8 to 9.5 mmols/day/70 kg. (4) Uur/Ucr indexed at 1:1 fell to 0.49. (5) SU rose from 8.8 to 34.9 mmol/1; SA fell from 36.1 to 31.0 gms/1; Upr rose from 1.4 to 2.3 gms/day. (6) Prednisone rose from 26 to 66 and then fell to 33 mgms/day. Correlations: (1) Cur and Uur(r = 0.99, p < 0.001). (2) Ccr and Uur (r = 0.99, p < 0.001). (3) Cur and Uur/Ucr (r = 0.88, p < 0.01) with a decelerating breakpoint at Cur 18 and Ccr 32 ml/min/70 kg (p < 0.01). (4) SU and Uur negatively (r = 0.90, p < 0.01. (5) Cur and SA albumin (r = 0.82, p < 0.05). (6) Cur and prednisone, Upr and SA do not correlate.
In this model of chronic renal failure: (1) Renal function controls protein intake. (2) Body protein mass is relatively well preserved despite the decreased protein intake implying a decrease in the protein turnover rate and a consequent increase in body protein average age. (3) Protein malnutrition, protein ageing, and decreased protein turnover are likely pathophysiological reactions to chronic renal failure and may be part of the pathogenesis of chronic uremia.
在慢性肾衰竭的移植肾失功模型中确定肾功能下降与蛋白质摄入及代谢之间的纵向关系。
研究组为我们连续选取的首例8名尸体肾移植受者,他们在肌酐清除率恢复正常后,继而发展为慢性肾衰竭。我们分析了他们的尿素和肌酐清除率(Cur、Ccr)、血清尿素(SU)、尿尿素和肌酐(Ur、Ucr)、血清白蛋白(SA)、尿蛋白(Upr)、体重(BW)以及类固醇剂量。稳态尿尿素氮也是膳食蛋白质摄入量(DPI)和蛋白质分解代谢率(PCR)。Ucr可衡量身体蛋白质总量。Ucr/Uur可衡量身体蛋白质总量与尿素排泄量的比值。平均随访4.7年,范围为1.5 - 8.7年。
平均变化情况:(1)体重(BW)从56千克升至65千克,随后降至61千克。(2)Cur从65降至5,Ccr从92降至12毫升/分钟/70千克。(3)Uur从369降至107,Ucr从16.8降至9.5毫摩尔/天/70千克。(4)Uur/Ucr指数从1:1降至0.49。(5)SU从8.8升至34.9毫摩尔/升;SA从36.1降至31.0克/升;Upr从1.4升至2.3克/天。(6)泼尼松从26毫克/天升至66毫克/天,随后降至33毫克/天。相关性:(1)Cur与Uur(r = 0.99,p < 0.001)。(2)Ccr与Uur(r = 0.99,p < 0.001)。(3)Cur与Uur/Ucr(r = 0.88,p < 0.01),在Cur为18且Ccr为32毫升/分钟/70千克时出现减速转折点(p < 0.01)。(4)SU与Uur呈负相关(r = 0.90,p < 0.01)。(5)Cur与SA白蛋白(r = 0.82,p < 0.05)。(6)Cur与泼尼松、Upr与SA无相关性。
在这个慢性肾衰竭模型中:(1)肾功能控制蛋白质摄入。(2)尽管蛋白质摄入量减少,但身体蛋白质总量相对保存良好,这意味着蛋白质代谢率降低,进而身体蛋白质平均年龄增加。(3)蛋白质营养不良、蛋白质老化以及蛋白质代谢率降低可能是慢性肾衰竭的病理生理反应,并且可能是慢性尿毒症发病机制的一部分。