Suppr超能文献

医学诊断、诊断空间与模糊系统。

Medical diagnosis, diagnostic spaces, and fuzzy systems.

作者信息

Bellamy J E

机构信息

Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada.

出版信息

J Am Vet Med Assoc. 1997 Feb 1;210(3):390-6.

PMID:9057925
Abstract

The complexity and uncertainty of diagnostic information makes the diagnostic process difficult to learn, teach, and practice. Fuzzy logic methods, used successfully with complex industrial control problems, may be appropriate to model the range of uncertainties found in medical diagnostic information. A fuzzy systems model for use with diagnostic and other medical decisions is described. Combining a state space view of an animal in which each dimension of the space represents a variable of the animal with a fuzzy sets representation of the variables and states of the animal leads to a fuzzy systems model, which can be used to successfully diagnose disease. Partitioning the multidimensional state space of the animal into healthy and specific disease regions provides a diagnostic space for evaluating the health of the animal. When an input vector representing the variables of a sick animal is entered into the system, the model can provide a diagnosis and, potentially, a prognosis for that animal. The model can be implemented on a desktop computer for convenient use, and it provides a helpful geometric interpretation of the concepts of "diagnosis" and "prognosis" for teaching diagnostic reasoning. The fuzzy systems approach has advantages that are unavailable in other methods. The capability of fuzzy systems to act as universal approximators allows them to accommodate complex, nonlinear, imprecise, and even conflicting relationships to provide accurate knowledge representation. With these advantages over standard rule-based methods of modeling the medical diagnostic process, fuzzy expert systems have broad potential for use in medicine and warrant further study to determine their application and possible limitations.

摘要

诊断信息的复杂性和不确定性使得诊断过程难以学习、教授和实践。模糊逻辑方法在复杂的工业控制问题中得到了成功应用,可能适用于对医学诊断信息中存在的各种不确定性进行建模。本文描述了一种用于诊断及其他医疗决策的模糊系统模型。将动物的状态空间视图(其中空间的每个维度代表动物的一个变量)与动物变量和状态的模糊集表示相结合,可得出一个模糊系统模型,该模型可用于成功诊断疾病。将动物的多维状态空间划分为健康区域和特定疾病区域,为评估动物的健康状况提供了一个诊断空间。当将代表患病动物变量的输入向量输入系统时,该模型可为该动物提供诊断,甚至可能提供预后情况。该模型可在台式计算机上实现,方便使用,并且为教学诊断推理提供了对“诊断”和“预后”概念的有益几何解释。模糊系统方法具有其他方法所没有的优势。模糊系统作为通用逼近器的能力使它们能够适应复杂、非线性、不精确甚至相互冲突的关系,以提供准确的知识表示。由于在对医学诊断过程进行建模方面比基于标准规则的方法具有这些优势,模糊专家系统在医学领域具有广泛的应用潜力,值得进一步研究以确定其应用范围和可能的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验