Suppr超能文献

[通过测量镧系元素配合物的化学位移进行温度测量]

[Thermometry by measuring the chemical shift of lanthanide complex].

作者信息

Konstanczak P, Wust P, Sander B, Schründer S, Frenzel T, Wlodarczyk W, Vogl T, Müller G, Felix R

机构信息

Strahlenklinik und Poliklinik, Virchow-Klinikum, Medizinische Fakultät, Humboldt-Universität zu Berlin.

出版信息

Strahlenther Onkol. 1997 Feb;173(2):106-16. doi: 10.1007/BF03038930.

Abstract

BACKGROUND

In the long-term, non-invasive thermometry is vital for the continued clinical and technological development of regional hyperthermia. In magnetic resonance tomography. T1 relaxation time, diffusion and proton resonance frequency are used to measure temperature distributions. When used clinically in the pelvic region, all of these methods are plagued with errors and artefacts on account of the tissue relationships, tissue changes under hyperthermia, physiological and stochastic movements, inhomogeneities, drift phenomena and instabilities.

MATERIAL AND METHOD

We tested the relationship between the temperature and the chemical shift of a methyl group of a lanthanide complex with central atom praseodymium (Pr-MOE-DO3A. Schering AG). To do this we used cylindrical phantoms containing a 5-mmol-solution of this temperature-sensitive substance. High resolution spectra and relaxation times were determined in a Bruker AMX at 11.5 T. A calibration curve was then recorded by a Siemens Magnetom SP63 at 1.5 T. Local temperature distributions were determined using the chemical shift imaging method, with a matrix size of 16 x 8 and a narrow-band excitation pulse. The temperature distribution was created using a Nd:YAG laser applicator.

RESULTS

At a distance of -25.7 ppm from the water line, we found a singlet line with a temperature-dependent chemical shift of 0.13 ppm/C. In the phantom experiment we found that the chemical shift had a linear relationship with a gradient independent of the surroundings, and a temperature resolution of +/-0.6 degree C. With a concentration of 1 mmol/l, a matrix size of 8 x 8 and a measurement period of 5 s per acquisition, phantom measurements using the CSI method produced a signal to noise ratio of 3.5 per acquisition, i.e a measurement period of 10 to 20 s per spectrum.

CONCLUSIONS

Our in vitro data show that spectroscopic temperature measurement using a temperature-sensitive praseodymium complex with a therapeutically practical concentration of 1 mmol/l already appears to be suitable for clinical use Compared with the methods tested so far (T1, diffusion, proton resonance), this method has the special advantage of not being very susceptible to artefacts. The competing methods of non-invasive thermometry using magnetic resonance tomography/spectroscopy will be investigated next.

摘要

背景

从长远来看,非侵入性温度测量对于区域热疗在临床和技术方面的持续发展至关重要。在磁共振断层扫描中,T1弛豫时间、扩散和质子共振频率被用于测量温度分布。当在盆腔区域临床应用时,由于组织关系、热疗引起的组织变化、生理和随机运动、不均匀性、漂移现象和不稳定性,所有这些方法都存在误差和伪影。

材料与方法

我们测试了一种中心原子为镨(Pr-MOE-DO3A,先灵公司)的镧系配合物甲基基团的温度与化学位移之间的关系。为此,我们使用了含有5 mmol/L这种温度敏感物质溶液的圆柱形体模。在布鲁克AMX 11.5 T设备上测定高分辨率光谱和弛豫时间。然后在西门子Magnetom SP63 1.5 T设备上记录校准曲线。使用化学位移成像方法确定局部温度分布,矩阵大小为16×8,采用窄带激发脉冲。温度分布通过Nd:YAG激光施照器产生。

结果

在距水线-25.7 ppm处,我们发现了一条单峰线,其化学位移随温度变化,变化率为0.13 ppm/℃。在体模实验中,我们发现化学位移与梯度呈线性关系,且与周围环境无关,温度分辨率为±0.6℃。浓度为1 mmol/L,矩阵大小为8×8,每次采集测量时间为5 s时,使用化学位移成像(CSI)方法进行体模测量,每次采集的信噪比为3.5,即每个光谱的测量时间为10至20 s。

结论

我们的体外数据表明,使用治疗实用浓度为1 mmol/L的温度敏感镨配合物进行光谱温度测量似乎已适用于临床应用。与目前测试的方法(T1、扩散、质子共振)相比,该方法具有不易受伪影影响的特殊优势。接下来将研究使用磁共振断层扫描/光谱的非侵入性温度测量的竞争方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验