Suppr超能文献

反硝化真菌东京柱孢霉和尖孢镰刀菌中一氧化氮还原酶的功能与结构比较

Functional and structural comparison of nitric oxide reductases from denitrifying fungi Cylindrocarpon tonkinense and Fusarium oxysporum.

作者信息

Toritsuka N, Shoun H, Singh U P, Park S Y, Iizuka T, Shiro Y

机构信息

Institute of Applied Biochemistry, University of Tsukuba, Ibaraki, Japan.

出版信息

Biochim Biophys Acta. 1997 Mar 7;1338(1):93-9. doi: 10.1016/s0167-4838(96)00193-8.

Abstract

Two isozymes of nitric oxide reductase (Nor) from the denitrifying fungus Cylindrocarpon tonkinense (c.Nor1 and c.Nor2) are the heme-enzyme cytochrome P-450's (Usuda et al. (1995) Appl. Environ. Microbiol. 61, 883-889). However, they catalyze the NO reduction to N2O, but not the monooxygenation reaction using O2. We kinetically and spectrophotometrically studied the reactions of the two Nor's with NO and electron donor, NAD(P)H, using flash-photolysis and stopped-flow rapid scan methods. The enzyme in the Fe3+ state can bind NO to yield the Fe3+ NO complex. When the resultant Fe3+ NO complex reacted with the electron donor, it was converted to the Fe3+ enzyme via a transient formation of the characteristic intermediate (I). The spectroscopic results were essentially the same as those of the Nor from another denitrifying fungus Fusarium oxysporum (f.Nor), which we previously reported (Shiro et al. (1995) J. Biol. Chem. 270, 1617-1623), suggesting that these fungal Nor's catalyze the NO reduction by the same mechanism. Most probably, the Fe3+ NO complex of the Nor is reduced with two-electrons directly transferred from NAD(P)H to yield the intermediate I, and then the I reacts with another NO to generate N2O and the Fe3+ enzyme. However, the kinetic measurements showed that the reaction rate constant of each step was variable depending on the combination of the Nor and the electron donor; i.e., c.Nor1 + NADH, c.Nor2 + NADPH, c.Nor2 + NADH and f.Nor + NADH. In particular, the rate constant for the electron transfer step from the electron donor to the Fe3+ NO enzyme is dramatically different among these systems. On the other hand, we also measured paramagnetically shifted 1H-NMR spectra of c.Nor2 and f.Nor in the ferrous (reduced) state, where the iron-bound Cys beta-CH2 signal was observed at the same position (approximately 270 ppm) for c.Nor2 and f.Nor, indicating that the Cys thiolate (S-) coordinates to the heme iron in the same fashion in the Nor's. However, the heme peripheral proton signals were subtly but significantly different in their positions between the two enzymes. On the basis of these kinetic and spectroscopic data, we suggested that the Fe-S- binding character is not essential for the NO reduction reactivity, but that the subtle difference in interaction of their hemes with the surroundings is possibly responsible for the difference in the Nor reactivity, especially in the electron transfer step from NAD(P)H to the Fe3+ NO moiety.

摘要

来自反硝化真菌东京柱孢菌(c.Nor1和c.Nor2)的两种一氧化氮还原酶(Nor)同工酶属于血红素酶细胞色素P-450(Usuda等人,(1995年)《应用与环境微生物学》61卷,883 - 889页)。然而,它们催化将NO还原为N2O,但不催化使用O2的单加氧反应。我们使用闪光光解和停流快速扫描方法,对这两种Nor与NO和电子供体NAD(P)H的反应进行了动力学和分光光度研究。处于Fe3 + 状态的酶可以结合NO生成Fe3 + NO复合物。当生成的Fe3 + NO复合物与电子供体反应时,它通过特征中间体(I)的短暂形成转化为Fe3 + 酶。光谱结果与我们之前报道的另一种反硝化真菌尖孢镰刀菌(f.Nor)的Nor基本相同(Shiro等人,(1995年)《生物化学杂志》270卷,1617 - 1623页),表明这些真菌Nor通过相同的机制催化NO还原。很可能,Nor的Fe3 + NO复合物通过从NAD(P)H直接转移的两个电子被还原,生成中间体I,然后I与另一个NO反应生成N2O和Fe3 + 酶。然而,动力学测量表明,每个步骤的反应速率常数因Nor和电子供体的组合而异;即,c.Nor1 + NADH、c.Nor2 + NADPH、c.Nor2 + NADH和f.Nor + NADH。特别是,在这些系统中,从电子供体到Fe3 + NO酶的电子转移步骤的速率常数差异很大。另一方面,我们还测量了处于亚铁(还原)状态的c.Nor2和f.Nor的顺磁位移氢核磁共振谱,其中在相同位置(约270 ppm)观察到c.Nor2和f.Nor的铁结合半胱氨酸β - CH2信号,表明半胱氨酸硫醇盐(S - )以相同方式与Nor中的血红素铁配位。然而,两种酶的血红素外围质子信号在位置上有细微但显著的差异。基于这些动力学和光谱数据,我们认为Fe - S结合特性对于NO还原反应性不是必需的,但它们的血红素与周围环境相互作用的细微差异可能是Nor反应性差异的原因,特别是在从NAD(P)H到Fe3 + NO部分的电子转移步骤中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验